Review
BibTex RIS Cite

Point-of-Care Diagnostic Methods in Veterinary Microbiology

Year 2021, , 86 - 92, 22.06.2021
https://doi.org/10.31196/huvfd.908142

Abstract

Point of care testing methods can be expressed as methods to diagnose the disease quickly and accurately in field conditions. Although traditional diagnostic methods have high sensitivity and specificity, they have led to searching for alternative methods due to their long diagnosis times, labor requirements, and high costs. In veterinary medicine, well-designed patient/herd side diagnosis methods provide advantages in terms of applicability in the field since the animals are mainly located far from the center. In addition, rapid diagnosis is of critical importance in the event of a possible epidemic. In this review, diagnostic methods and technologies that allow diagnosis besides the patient/herd are mentioned, and examples of these methods are presented.

References

  • Ahmed A, Rushworth JV, Hirst NA, Millner PA, 2014: Biosensors for whole-cell bacterial detection. Clinical Microbiology Reviews, 27(3), 631-646.
  • Bahadır EB, Sezgintürk MK, 2016: Lateral flow assays;Principles,designs and labels. Trends Analy Chem, 82, 286-306.
  • Bahadır EB, Sezgintürk MK, 2014: A review on impedimetric biosensors. Artif Cells Nanomed Biotechnol, 44(1), 248-262.
  • Belák S, Ballagi-Pordány A, 1993: Application of the polymerase chain reaction (PCR) in veterinary diagnostic virology. Vet Res Commun, 17, 55-72.
  • Busin V, Wells B, Kersaudy-Kerhoas M, Shu W, Burgess STG, 2016: Opportunities and challenges for the application of microfluidic Technologies in point-of-care veterinary diagnostics. Mol Cell Probes, 30, 331-341.
  • Chang CC, Chen CC, Wei SC, Lu HH, Liang YH, Lin CW, 2012: Diagnostic Devices for Isothermal Nucleic Acid Amplification. Sensors, 12, 8319-8337.
  • Chatterjee B, Kalyani N, Das S, Anand A, Sharma TK (2019). Chapter 2- Nano-realm for point-of-care (POC) bacterial diagnostics In: Methods in Microbiology, Gurtler V, Ball AS, Soni S (Ed), 19-42, Academic Press, London. Web sayfası: Anonim (1) https://www.sciencedirect.com, Erişim tarihi; 11.03.2021.
  • Chin CD, Linder V, Sia SK, 2007: Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip, 7(1), 41-57.
  • Cortina ME, Novak A, Melli LJ, Elena S, Corbera N, Romero JE, Nicola AM, Ugalde JE, Comerci DJ, Ciocchini AE, 2017: Development of improved enzyme-based and lateral flow immunoassays for rapid and accurate serodiagnosis of canine brucellosis. Vet Microbiol, 208, 174-180.
  • Craw P, Balachandran W, 2012: Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip, 12, 2469-2486.
  • Duarte C, Costa T, Carnerio C, Soares R, Jitariu A, Cardoso S, Piedade M, Bexiga R, Freitas P, 2016: Semi-quantitative method for Streptococci magnetic detection in raw milk. Biosensors, 6(2), 19.
  • Etayash H, Jiang K, Thundat T, Kaur K, 2014: Impedimetric Detection of Pathogenic Gram-Positive Bacteria Using an Antimicrobial Peptide from Class IIa Bacteriocins. Anal Chem, 86, 1693-1700.
  • Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y, 2008: Sensitive optical biosensors for unlabeled targets: A review. Anal Chim Acta, 620, 8-26.
  • Galvan DD, Yu Q, 2018: Surface-enhanced raman scattering for rapid detection and characterization of antibiotic-resistant bacteria. Adv Healthcare Mater, 7, 1701335.
  • Hardt S, Schönfeld F, 2007: Microfluidic Technologies for Miniaturized Analysis Systems. Springer, Boston, USA.
  • Hiraiwa M, Kim JH, Lee HB, Inoue S, Becker AL, Weigel KM, Cangelosi GA, Lee KH, Chung JH, 2015: Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis. J Micromech Microeng, 25, 055013.
  • Jacob ME, Crowell MD, Fauls MB, Griffith EH, Ferris KK, 2016: Diagnostic accuracy of rapid immunoassay for point-of-care detection of urinary tract infection in dogs. Am J Vet Res, 77(2), 162-166.
  • Karthik K, Rathore R, Thomas P, Arun TR, Viswas KN, Agarwal RK, Manjunathackar HV, Dhama K, 2014: Loop mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle. Vet Q, 34(4), 174-179.
  • Kawai K, İnada M, Ito K, Hashimoto K, Nikaido M, Hata E, Katsuda K, KİKU Y, Tagawa Y, Hayashi T, 2017: Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip. J Vet Med Sci, 79(12), 1973,1977.
  • Kettler H, White K, Hawkes S, 2004: Mapping the landscape of diagnostics for sexually transmitted infections. WHO/TDR, Geneva, Switzerland.
  • Koczula MK, Gallotta A, 2016: Lateral flow immunoassay. Essays Biochem, 60(1), 111-120.
  • Lalande V, Barrault L, Wadel S, Eckert C, Petit JC, Barbut F, 2011: Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections. J Clin Microbiol. 49(7), 2714-2716.
  • Lamb LS, Parrish RS, Goran SF, 1995: Current nursing practice of point-of-care laboratory testing in critical care units. Am j Crit Care, 4(6), 429-434.
  • Leva-Bueno J, Peyman SA, Millner PA, 2020: A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol, 209, 343-362.
  • Li S, Liu Y, Chen X, Wang M, Hu W, Yan J, 2019: Visual and Rapid Detection of Leptospira interrogans Using Multiple Cross-Displacement Amplification Coupled with Nanoparticle-Based Lateral Flow Biosensor. Vector Borne Zoonotic Dis, 19(8), 604-612.
  • Li Y (2006). Section 2.3. Biosensors In: CIGR Handbook of Agricultural Engineering Volume VI Information Technology. Munack A (Ed), 52-93, American Society of Agricultural Engineers, Michigan. Web sayfası: Anonim (1) https://cigr.org, Erişim tarihi; 21.02.2021.
  • Loo JFC, Kwok HC, Leungc CCH, Wub SY, Lawa ILG, Cheungd YK, Cheunge YY, Chine ML, Kwand P, Huie M, Konga SK, Hob HP, 2016: Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab-on-a-disc. Biosens and Bioelectron, 93, 212-219.
  • Martinez AW, 2011: Microfluidic paper-based analytical devices:from POCKET to paper-based ELİSA. Bioanalysis, 3(23), 2589-2592.
  • Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM, 2008: Simple telemedicine for developing regions:camera phones and paper-based microfluidic devices for real-time,off-site diagnosis. Anal Chem, 80(10), 3699-3707.
  • Mori Y, Nagamine K, Tomita N, Notomi T, 2001: Detection of loop mediated isothermal amplification reaction by turbidity derived from magnesium phyrophospate formation. Biochem Biophys Res Commun, 289(1), 150-154.
  • Mullis KB, Faloona FA, 1987: Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth Enzymol. 155, 335-350.
  • Nagamine K, Hase T, Notomi T, 2002: Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, 16(3), 223-229.
  • Najian ABN, Syafirah EAR, Ismail N, Mohamed M, Yean CY, 2016: Development of multiplex loop mediated isothermal amplification(m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal Chim Acta, 903, 142-148.
  • Nakajima H, Inoue M, Mori T, Itoh K, Arakawa E, Watabane H, 1992: Detection and identification of Yersinia pseudotuberculosis and Pathogenic Yersinia enterocolitica by an improved Polymerase Chain Reaction method. J Clin Microbiol. 30(9), 2484-2486.
  • Nayak S, Sridhara A, Melo R, Richer L, Chee NH, Kim J, Vincent L, Steinmiller D, Sia SK, Gomes-Solecki M, 2016: Microfluidics-based point-of-care test for serodiagnosis of Lyme disease. Sci Rep, 6(1), 35069.
  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watabane K, Amino N, 2000: Loop-mediated ısothermal amplification of DNA. Nucleic Acids Res, 28(12), E63.
  • Pal V, Saxena A, Singh S, Goel AK, Kumar JS, Parida MM, 2018: Development of a real-time loop-mediated isothermal amplification assay for detection of Burkholderia mallei. Transbound Emerg Dis. 65, e32-e39.
  • Patterson AS, Heithoff DM, Ferguson BS, Soh HT, Mahan MJ, Plaxcoa KW, 2013: Microfluidic chip-based detection and ıntraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice. Appl Environ Microbiol, 79(7), 2302-2311.
  • Raele DA, Garofolo G, Galante D, Cafiero MA, 2015: Molecular detection of Coxiella burnetii using an alternative loop-mediated isothermal amplification assay (LAMP). Vet Ital, 51(1), 73-78.
  • Rattle S, Hofmann O, Price CP, Kricka LJ, Wild D (2013). Lab-on-a-chip, micro- and nanoscale immunoassay systems and microarrays In: The Immunoassay Hanbook (Fourth Edition), Wild D (Ed), 175-202, Elsevier, Oxford. Web sayfası: Anonim (1) https:// www.sciencedirect.com, Erişim tarihi; 06.03.2021.
  • Reinert RR, 2007: Rapid streptococcal antigen detection tests. J Lab Med. 31(6),280-293.
  • Sadeghi SJ (2013). Amperometric biosensors In: Encyclopedia of Biophysics, Roberts GCK (Ed), 61-67, Springer, Berlin. Web sayfası: Anonim (1) https://link.springer.com, Erişim tarihi; 25.02.2021.
  • Sahoo PR, Sethy K, Mohapatra S, Panda D, 2016a: Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.Vet World, 9(5), 465-469.
  • Sahoo PR, Mishra SR, Kar D, 2016b: Lateral flow assay-A new platform for diagnosis of livestock disease. İnt J Livest Res, 6(2), 1-9.
  • Salam F, Uludag Y, Tothill IE, 2013: Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta, 115, 761-767.
  • Salman A, Carney H, Bateson S, Ali Z, 2020: Shunting microfluidic PCR device for rapid bacterial detection. Talanta, 207, 120303.
  • Sareyyupoglu B, Akan M, 2006 Restriction fragment length polymorphism typing of infectious bursal disease virüs field strains in Turkey. Avian Dis, 50, 545-549.
  • Sia SK, Whitesides GM, 2003: Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis, 24(21), 3563-3576.
  • Taheri RA, Rezayan AH, Rahimi F, Mohammadnejad J, Kamali M, 2016: Development of an immunosensor using oriented immobilized antiOmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosens and Bioelectron, 86, 484-488.
  • Wadhwa A, Foote RS, Shaw RW, Eda S, 2012: Bead-based microfluidic immunoassay for diagnosis of Johne's disease. J İmmunol Methods, 382(1-2), 196-202.
  • Wang Y, Wang Y, Ma AJ, Li DX, Luo LJ, Liu DX, Jing D, Liu K, Ye CY, 2015: Rapid and sensitive isothermal detection of nucleic-acid sequence by multiple cross displacement amplification. Sci Rep, 5, 11902.
  • Wang Y, Li H, Wang Y, Zhang L, Xu J, Ye C, 2017: Loop-mediated isothermal amplification label-based gold nanoparticles lateral flow biosensor for detection of Enterococcus faecalis and Staphylococcus aureus. Front Microbiol, 8, 192.
  • Wang C, Gu B, Liu Q, Pang Y, Xiao R, Wang S, 2018: Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. Int J Nanomedicine, 13, 1159-1178.
  • Wang C, Liu M, Wang Z, Li S, Deng Y, He N, 2021: Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today, 37, 101092.
  • Yamazaki W, Taguchi M, Ishibashi M, Nukina M, Misawa N, Inoue K, 2009: Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Campylobacter fetus. Vet Microbiol. 136, 393-396.
  • Zhang X, Lowe SB, Gooding JJ, 2014: Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens and Bioelectron, 61, 491-499.
  • Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX, 2010: Real-Time Potentiometric Detection of Bacteria in Complex Samples. Anal Chem,82, 9254-9260.

Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri

Year 2021, , 86 - 92, 22.06.2021
https://doi.org/10.31196/huvfd.908142

Abstract

Hasta/sürü yanında teşhis yöntemleri, bir hastalığın teşhisinin saha koşullarında hızlı ve doğru bir şekilde yapılmasını amaçlayan yöntemler olarak ifade edilebilir. Geleneksel tanı yöntemleri, yüksek duyarlılık ve özgüllüğe sahip olmakla birlikte, uzun tanı süreleri ile iş gücü gereksinimleri ve yüksek maliyetleri nedeniyle, alternatif yöntem arayışlarının doğmasına neden olmuştur. Veteriner Hekimlikte, hayvanlar çoğunlukla merkeze uzak bir konumda bulunduğu için iyi tasarlanmış hasta/sürü yanı teşhis yöntemleri sahada uygulanabilirlik açısından avantaj sağlamaktadır. Ayrıca, olası bir salgın durumunda hızlı tanının çok kritik bir önemi bulunmaktadır. Bu derlemede hasta/sürü yanında teşhise olanak sağlayan tanı yöntemlerinden ve teknolojilerinden bahsedilmiş, bu yöntemlerin kullanımına ilişkin örnekler sunulmuştur.

References

  • Ahmed A, Rushworth JV, Hirst NA, Millner PA, 2014: Biosensors for whole-cell bacterial detection. Clinical Microbiology Reviews, 27(3), 631-646.
  • Bahadır EB, Sezgintürk MK, 2016: Lateral flow assays;Principles,designs and labels. Trends Analy Chem, 82, 286-306.
  • Bahadır EB, Sezgintürk MK, 2014: A review on impedimetric biosensors. Artif Cells Nanomed Biotechnol, 44(1), 248-262.
  • Belák S, Ballagi-Pordány A, 1993: Application of the polymerase chain reaction (PCR) in veterinary diagnostic virology. Vet Res Commun, 17, 55-72.
  • Busin V, Wells B, Kersaudy-Kerhoas M, Shu W, Burgess STG, 2016: Opportunities and challenges for the application of microfluidic Technologies in point-of-care veterinary diagnostics. Mol Cell Probes, 30, 331-341.
  • Chang CC, Chen CC, Wei SC, Lu HH, Liang YH, Lin CW, 2012: Diagnostic Devices for Isothermal Nucleic Acid Amplification. Sensors, 12, 8319-8337.
  • Chatterjee B, Kalyani N, Das S, Anand A, Sharma TK (2019). Chapter 2- Nano-realm for point-of-care (POC) bacterial diagnostics In: Methods in Microbiology, Gurtler V, Ball AS, Soni S (Ed), 19-42, Academic Press, London. Web sayfası: Anonim (1) https://www.sciencedirect.com, Erişim tarihi; 11.03.2021.
  • Chin CD, Linder V, Sia SK, 2007: Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip, 7(1), 41-57.
  • Cortina ME, Novak A, Melli LJ, Elena S, Corbera N, Romero JE, Nicola AM, Ugalde JE, Comerci DJ, Ciocchini AE, 2017: Development of improved enzyme-based and lateral flow immunoassays for rapid and accurate serodiagnosis of canine brucellosis. Vet Microbiol, 208, 174-180.
  • Craw P, Balachandran W, 2012: Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip, 12, 2469-2486.
  • Duarte C, Costa T, Carnerio C, Soares R, Jitariu A, Cardoso S, Piedade M, Bexiga R, Freitas P, 2016: Semi-quantitative method for Streptococci magnetic detection in raw milk. Biosensors, 6(2), 19.
  • Etayash H, Jiang K, Thundat T, Kaur K, 2014: Impedimetric Detection of Pathogenic Gram-Positive Bacteria Using an Antimicrobial Peptide from Class IIa Bacteriocins. Anal Chem, 86, 1693-1700.
  • Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y, 2008: Sensitive optical biosensors for unlabeled targets: A review. Anal Chim Acta, 620, 8-26.
  • Galvan DD, Yu Q, 2018: Surface-enhanced raman scattering for rapid detection and characterization of antibiotic-resistant bacteria. Adv Healthcare Mater, 7, 1701335.
  • Hardt S, Schönfeld F, 2007: Microfluidic Technologies for Miniaturized Analysis Systems. Springer, Boston, USA.
  • Hiraiwa M, Kim JH, Lee HB, Inoue S, Becker AL, Weigel KM, Cangelosi GA, Lee KH, Chung JH, 2015: Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis. J Micromech Microeng, 25, 055013.
  • Jacob ME, Crowell MD, Fauls MB, Griffith EH, Ferris KK, 2016: Diagnostic accuracy of rapid immunoassay for point-of-care detection of urinary tract infection in dogs. Am J Vet Res, 77(2), 162-166.
  • Karthik K, Rathore R, Thomas P, Arun TR, Viswas KN, Agarwal RK, Manjunathackar HV, Dhama K, 2014: Loop mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle. Vet Q, 34(4), 174-179.
  • Kawai K, İnada M, Ito K, Hashimoto K, Nikaido M, Hata E, Katsuda K, KİKU Y, Tagawa Y, Hayashi T, 2017: Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip. J Vet Med Sci, 79(12), 1973,1977.
  • Kettler H, White K, Hawkes S, 2004: Mapping the landscape of diagnostics for sexually transmitted infections. WHO/TDR, Geneva, Switzerland.
  • Koczula MK, Gallotta A, 2016: Lateral flow immunoassay. Essays Biochem, 60(1), 111-120.
  • Lalande V, Barrault L, Wadel S, Eckert C, Petit JC, Barbut F, 2011: Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections. J Clin Microbiol. 49(7), 2714-2716.
  • Lamb LS, Parrish RS, Goran SF, 1995: Current nursing practice of point-of-care laboratory testing in critical care units. Am j Crit Care, 4(6), 429-434.
  • Leva-Bueno J, Peyman SA, Millner PA, 2020: A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol, 209, 343-362.
  • Li S, Liu Y, Chen X, Wang M, Hu W, Yan J, 2019: Visual and Rapid Detection of Leptospira interrogans Using Multiple Cross-Displacement Amplification Coupled with Nanoparticle-Based Lateral Flow Biosensor. Vector Borne Zoonotic Dis, 19(8), 604-612.
  • Li Y (2006). Section 2.3. Biosensors In: CIGR Handbook of Agricultural Engineering Volume VI Information Technology. Munack A (Ed), 52-93, American Society of Agricultural Engineers, Michigan. Web sayfası: Anonim (1) https://cigr.org, Erişim tarihi; 21.02.2021.
  • Loo JFC, Kwok HC, Leungc CCH, Wub SY, Lawa ILG, Cheungd YK, Cheunge YY, Chine ML, Kwand P, Huie M, Konga SK, Hob HP, 2016: Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab-on-a-disc. Biosens and Bioelectron, 93, 212-219.
  • Martinez AW, 2011: Microfluidic paper-based analytical devices:from POCKET to paper-based ELİSA. Bioanalysis, 3(23), 2589-2592.
  • Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM, 2008: Simple telemedicine for developing regions:camera phones and paper-based microfluidic devices for real-time,off-site diagnosis. Anal Chem, 80(10), 3699-3707.
  • Mori Y, Nagamine K, Tomita N, Notomi T, 2001: Detection of loop mediated isothermal amplification reaction by turbidity derived from magnesium phyrophospate formation. Biochem Biophys Res Commun, 289(1), 150-154.
  • Mullis KB, Faloona FA, 1987: Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth Enzymol. 155, 335-350.
  • Nagamine K, Hase T, Notomi T, 2002: Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, 16(3), 223-229.
  • Najian ABN, Syafirah EAR, Ismail N, Mohamed M, Yean CY, 2016: Development of multiplex loop mediated isothermal amplification(m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal Chim Acta, 903, 142-148.
  • Nakajima H, Inoue M, Mori T, Itoh K, Arakawa E, Watabane H, 1992: Detection and identification of Yersinia pseudotuberculosis and Pathogenic Yersinia enterocolitica by an improved Polymerase Chain Reaction method. J Clin Microbiol. 30(9), 2484-2486.
  • Nayak S, Sridhara A, Melo R, Richer L, Chee NH, Kim J, Vincent L, Steinmiller D, Sia SK, Gomes-Solecki M, 2016: Microfluidics-based point-of-care test for serodiagnosis of Lyme disease. Sci Rep, 6(1), 35069.
  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watabane K, Amino N, 2000: Loop-mediated ısothermal amplification of DNA. Nucleic Acids Res, 28(12), E63.
  • Pal V, Saxena A, Singh S, Goel AK, Kumar JS, Parida MM, 2018: Development of a real-time loop-mediated isothermal amplification assay for detection of Burkholderia mallei. Transbound Emerg Dis. 65, e32-e39.
  • Patterson AS, Heithoff DM, Ferguson BS, Soh HT, Mahan MJ, Plaxcoa KW, 2013: Microfluidic chip-based detection and ıntraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice. Appl Environ Microbiol, 79(7), 2302-2311.
  • Raele DA, Garofolo G, Galante D, Cafiero MA, 2015: Molecular detection of Coxiella burnetii using an alternative loop-mediated isothermal amplification assay (LAMP). Vet Ital, 51(1), 73-78.
  • Rattle S, Hofmann O, Price CP, Kricka LJ, Wild D (2013). Lab-on-a-chip, micro- and nanoscale immunoassay systems and microarrays In: The Immunoassay Hanbook (Fourth Edition), Wild D (Ed), 175-202, Elsevier, Oxford. Web sayfası: Anonim (1) https:// www.sciencedirect.com, Erişim tarihi; 06.03.2021.
  • Reinert RR, 2007: Rapid streptococcal antigen detection tests. J Lab Med. 31(6),280-293.
  • Sadeghi SJ (2013). Amperometric biosensors In: Encyclopedia of Biophysics, Roberts GCK (Ed), 61-67, Springer, Berlin. Web sayfası: Anonim (1) https://link.springer.com, Erişim tarihi; 25.02.2021.
  • Sahoo PR, Sethy K, Mohapatra S, Panda D, 2016a: Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.Vet World, 9(5), 465-469.
  • Sahoo PR, Mishra SR, Kar D, 2016b: Lateral flow assay-A new platform for diagnosis of livestock disease. İnt J Livest Res, 6(2), 1-9.
  • Salam F, Uludag Y, Tothill IE, 2013: Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta, 115, 761-767.
  • Salman A, Carney H, Bateson S, Ali Z, 2020: Shunting microfluidic PCR device for rapid bacterial detection. Talanta, 207, 120303.
  • Sareyyupoglu B, Akan M, 2006 Restriction fragment length polymorphism typing of infectious bursal disease virüs field strains in Turkey. Avian Dis, 50, 545-549.
  • Sia SK, Whitesides GM, 2003: Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis, 24(21), 3563-3576.
  • Taheri RA, Rezayan AH, Rahimi F, Mohammadnejad J, Kamali M, 2016: Development of an immunosensor using oriented immobilized antiOmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosens and Bioelectron, 86, 484-488.
  • Wadhwa A, Foote RS, Shaw RW, Eda S, 2012: Bead-based microfluidic immunoassay for diagnosis of Johne's disease. J İmmunol Methods, 382(1-2), 196-202.
  • Wang Y, Wang Y, Ma AJ, Li DX, Luo LJ, Liu DX, Jing D, Liu K, Ye CY, 2015: Rapid and sensitive isothermal detection of nucleic-acid sequence by multiple cross displacement amplification. Sci Rep, 5, 11902.
  • Wang Y, Li H, Wang Y, Zhang L, Xu J, Ye C, 2017: Loop-mediated isothermal amplification label-based gold nanoparticles lateral flow biosensor for detection of Enterococcus faecalis and Staphylococcus aureus. Front Microbiol, 8, 192.
  • Wang C, Gu B, Liu Q, Pang Y, Xiao R, Wang S, 2018: Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. Int J Nanomedicine, 13, 1159-1178.
  • Wang C, Liu M, Wang Z, Li S, Deng Y, He N, 2021: Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today, 37, 101092.
  • Yamazaki W, Taguchi M, Ishibashi M, Nukina M, Misawa N, Inoue K, 2009: Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Campylobacter fetus. Vet Microbiol. 136, 393-396.
  • Zhang X, Lowe SB, Gooding JJ, 2014: Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens and Bioelectron, 61, 491-499.
  • Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX, 2010: Real-Time Potentiometric Detection of Bacteria in Complex Samples. Anal Chem,82, 9254-9260.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Review
Authors

Bengi Akkoyunlu 0000-0002-0953-3802

Barış Sareyyüpoğlu 0000-0002-2212-2610

Publication Date June 22, 2021
Submission Date April 1, 2021
Acceptance Date June 10, 2021
Published in Issue Year 2021

Cite

APA Akkoyunlu, B., & Sareyyüpoğlu, B. (2021). Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri. Harran University Journal of the Faculty of Veterinary Medicine, 10(1), 86-92. https://doi.org/10.31196/huvfd.908142
AMA Akkoyunlu B, Sareyyüpoğlu B. Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri. Harran Univ Vet Fak Derg. June 2021;10(1):86-92. doi:10.31196/huvfd.908142
Chicago Akkoyunlu, Bengi, and Barış Sareyyüpoğlu. “Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri”. Harran University Journal of the Faculty of Veterinary Medicine 10, no. 1 (June 2021): 86-92. https://doi.org/10.31196/huvfd.908142.
EndNote Akkoyunlu B, Sareyyüpoğlu B (June 1, 2021) Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri. Harran University Journal of the Faculty of Veterinary Medicine 10 1 86–92.
IEEE B. Akkoyunlu and B. Sareyyüpoğlu, “Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri”, Harran Univ Vet Fak Derg, vol. 10, no. 1, pp. 86–92, 2021, doi: 10.31196/huvfd.908142.
ISNAD Akkoyunlu, Bengi - Sareyyüpoğlu, Barış. “Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri”. Harran University Journal of the Faculty of Veterinary Medicine 10/1 (June 2021), 86-92. https://doi.org/10.31196/huvfd.908142.
JAMA Akkoyunlu B, Sareyyüpoğlu B. Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri. Harran Univ Vet Fak Derg. 2021;10:86–92.
MLA Akkoyunlu, Bengi and Barış Sareyyüpoğlu. “Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri”. Harran University Journal of the Faculty of Veterinary Medicine, vol. 10, no. 1, 2021, pp. 86-92, doi:10.31196/huvfd.908142.
Vancouver Akkoyunlu B, Sareyyüpoğlu B. Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri. Harran Univ Vet Fak Derg. 2021;10(1):86-92.