Research Article
BibTex RIS Cite

Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması

Year 2018, Volume: 7 Issue: 2, 179 - 185, 27.12.2018
https://doi.org/10.31196/huvfd.508979

Abstract

Skorpionizmde
özgün tedavi yöntemi antivenom kullanımıdır. Antivenomların klinik olarak
alerjik reaksiyonlara yol açtığı bilinse de antikor özelliğinden dolayı
immunassay ölçüm yöntemlerinde oluşturabileceği interferans etkisi bilinmemektedir.
İmmunassay metotlar hormon, kardiyak markır, tümör markırı ve pek çok büyük
moleküllü parametrenin ölçülmesinde kullanılmaktadır. Birçok çalışmada farklı
antikorların neden olduğu interferans gösterilmiş fakat aynı durumun antivenomlar
tarafından da olabileceği gösterilmemiştir. Bu çalışmanın amacı akrep
antivenomunun immunassay yöntemde interferans oluşturma potansiyelinin deneysel
olarak araştırılmasıdır. Bu çalışmada akrep antivenomunun
23 adet immunassay test üzerindeki interferans etkileri incelendi. Çalışma
sonucunda serbest T3 seviyesi yüksek titre antivenomda %13.09’luk bir sapma
gösterdi. Fertilite testlerinden progesteron seviyesi düşük titrede %10.58 oranında,
testosteron seviyesi %14.57 oranında negatif interferansa uğramıştır. Parathormon
seviyelerinde düşük ve yüksek titre antivenom maruziyetinde %11-16 arasında
negatif interferans gözlenmiştir. Kütle kreatin kinaz MB testi %7.35-21.58
oranında negatif interferansa, troponin I testi %3-8.9 oranında pozitif
interferansa uğramıştır.
Özellikle
kardiyak testlerin yanlış negatif bulunması kardiyak komplikasyonların
atlanmasına neden olacağından hayati öneme sahiptir. Tümör markırları içinde en
çok negatif interferansa maruz kalan test %28.65-28.9 oranı ile kanser antijeni
19-9 oldu. Çoğu klinisyen tarafından bilinmeyen interfernas etki immunassay
testlerde hatalı ölçüme neden olabilecek birer risk faktörüdür. Tedavi
sırasında oluşabilecek bu tür durumlarla karşılaşmamak için hastane bilgi
yönetim sistemleri ile klinisyenler önceden uyarılabilir. İnterferansın neden
olduğu hatalı test sonuçları malpraktislerle karşılaşma riskini arttırmaktadır.
Sonuç olarak klinisyenler immunassay tekniklerden daha iyi yöntemler bulunana
kadar laboratuvar testlerini değerlendirirken interferansa karşı dikkatli
olmalıdır.

References

  • Aydin S, 2015: A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4-15.
  • Bais R, 2010: The effect of sample hemolysis on cardiac troponin I and T assays. Clin Chem, 56, 1357-59.
  • Berth M, Bosmans E, Everaert J, Dierick J, Schiettecatte J, Anckaert E, Delanghe J, 2006: Rheumatoid factor interference in the determination of carbohydrate antigen 19-9 (CA 19-9). Clin Chem and Lab Med (CCLM), 44, 1137-39.
  • Cavalier E, Carlisi A, Chapelle JP, Delanaye P, 2008: False positive PTH results: an easy strategy to test and detect analytical interferences in routine practice. Clinica Chimica Acta, 387, 150-52.
  • Chatenoud L, Baudrihaye MF, Chkoff N, Kreis H, Goldstein G, Bach JF, 1986: Restriction of the human in vivo immune response against the mouse monoclonal antibody OKT3. The Journal of Immunology, 137, 830-38.
  • Covinsky M, Laterza O, Pfeifer JD, Farkas-Szallasi T, Scott MG, 2000: An IgM λ antibody to Escherichia coli produces false-positive results in multiple immunometric assays. Clin Chem, 46, 1157-61.
  • De Rezende, Alves N, Dias MB, Campolina D, Chavez-Olortegui C, Diniz CR, Santos Amaral CF, 1995: Efficacy of antivenom therapy for neutralizing circulating venom antigens in patients stung by Tityus serrulatus scorpions. Am J Trop Med Hyg, 52, 277-80.
  • Eriksson S, Halenius H, Pulkki K, Hellman J, Pettersson K, 2005: Negative interference in cardiac troponin I immunoassays by circulating troponin autoantibodies. Clin Chem, 51, 839-47.
  • Frödin JE , Lefvert AK, Mellstedt H, 1992: The clinical significance of HAMA in patients treated with mouse monoclonal antibodies. Cell biophysics, 21, 153-65.
  • García-González E, Aramendía M, Álvarez-Ballano D, Trincado P, Rello L, 2016: Serum sample containing endogenous antibodies interfering with multiple hormone immunoassays. Laboratory strategies to detect interference. Pract Lab Med, 4, 1-10.
  • Gulbahar O, Degertekin CK, Akturk M, Yalcin MM, Kalan I, Atikeler GF, Altinova AE, Yetkin I, Arslan M, Toruner F, 2015: A case with immunoassay interferences in the measurement of multiple hormones. The Journal of Clinical Endocrinology & Metabolism, 100, 2147-53.
  • Gutiérrez JM, León G, Lomonte B, 2003: Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet, 42, 721-41.
  • Ismail AAA, Walker PL, Barth JH, Lewandowski KC, Jones R, Burr WA, 2002: Wrong biochemistry results: two case reports and observational study in 5310 patients on potentially misleading thyroid-stimulating hormone and gonadotropin immunoassay results. Clin Chem, 48, 2023-29.
  • Ismail AAA, Walker PL, Cawood ML, Barth JH, 2002: Interference in immunoassay is an underestimated problem. Ann Clin Biochem, 39, 366-73.
  • Khattabi A, Soulaymani-Bencheikh R, Achour S, Salmi LR, 2011: Classification of clinical consequences of scorpion stings: consensus development. Trans R Soc Trop Med Hyg, 105, 364-69.
  • Krahn J, Parry DM, Leroux M, Dalton J, 1999: High percentage of false positive cardiac troponin I results in patients with rheumatoid factor. Clin Biochem, 32, 477-80.
  • Marks, Vincent, 2002: False-positive immunoassay results: a multicenter survey of erroneous immunoassay results from assays of 74 analytes in 10 donors from 66 laboratories in seven countries. Clin Chem, 48, 2008-16.
  • McCarthy RC, Ryan FJ, McKenzie CM, 1988: Interference in immunoenzymometric assays caused by IgM anti-mouse IgG antibodies. Arch Pathol Lab Med, 112, 901-07.
  • Natrajan A, Sharpe D, Costello J, Jiang Q, 2010: Enhanced immunoassay sensitivity using chemiluminescent acridinium esters with increased light output. Anal Biochem, 406, 204-13.
  • Rauch P, Zellmer A, Dankbar N, Specht C, Sperling D, 2005: Assayoptimierung: Störeffekte bei Immunoassays erkennen und vermeiden. Laborwelt, 4, 33-39.
  • Sturgeon CM, Viljoen A, 2011: Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem, 48, 418-32.
  • Taylor AE , Keevil B, Huhtaniemi IT, 2015: Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. Eur J Endocrinol, 173, D1-D12.
  • Theakston RDG, Warrell DA, Griffiths E, 2003: Report of a WHO workshop on the standardization and control of antivenoms. Toxicon, 41, 541-57.
  • Valikhanfard-Zanjani E, Mirakabadi AZ, Oryan S, Goodarzi HR, Rajabi M, 2016: Specific Antivenom Ability in Neutralizing Hepatic and Renal Changes 24 Hours after Latrodectus dahli Envenomation. Journal of Arthropod-Borne Diseases, 10(2), 238-245.
  • Thompson M, Ellison SLR, 2008: A review of interference effects and their correction in chemical analysis with special reference to uncertainty. Accred Qual Assur, 10, 82–97.

Experimental Investigation of Interference Effect of Scorpion Antivenom on Immunoassay Method

Year 2018, Volume: 7 Issue: 2, 179 - 185, 27.12.2018
https://doi.org/10.31196/huvfd.508979

Abstract

The
original treatment of scorpionism is intravenous antivenom infusion. It is
known that antivenom causes clinically allergic reactions, however potential
interference effect of scorpion antivenom is unknown .  The aim of present study was to investigate
the potential of antivenom interference in immunosassay methods. In this study,
50 uL and 100 uL scorpion antivenom was added to 23 immunassay tests used for
measuring T3, progesterone, testosterone, parathormone, creatin kinase, cancer
antigen and troponin-I concentrations. The free T3 level showed a deviation of
13.09% in high titer antivenom.Progesterone levels were low in the fertility
test at 10.58% and testosterone level was 14.57% at the low level. Rate of free
T3 deviation was 13.09% in high titer of antivenom. In fertility tests, it was
observed that levels of progesterone and testosterone decreased between
10.58-14.57% in low titre antivenom exposure. Negative interference was
observed between 11-16% in low and high titre antivenom at parathomone levels.Mass
creatine kinase MB test exposured 7.35-21.58% negative interference and
troponin-I test introduced positive interference. Especially, the false
negative results of cardiac test have a vital proposition because it will cause
cardiac complications to be skipped. The most negative interference was observed
for Cancer Antigen 19-9 concentration with a rate of 28.65-28.9%. For all
immunoassay measurements, every antibody is a risk factor that cause false
negative or positive test result.
Therefore, clinicians should be careful to confirm
diagnostic laboratory tests until better methods than immunoassay techniques are
found.

References

  • Aydin S, 2015: A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4-15.
  • Bais R, 2010: The effect of sample hemolysis on cardiac troponin I and T assays. Clin Chem, 56, 1357-59.
  • Berth M, Bosmans E, Everaert J, Dierick J, Schiettecatte J, Anckaert E, Delanghe J, 2006: Rheumatoid factor interference in the determination of carbohydrate antigen 19-9 (CA 19-9). Clin Chem and Lab Med (CCLM), 44, 1137-39.
  • Cavalier E, Carlisi A, Chapelle JP, Delanaye P, 2008: False positive PTH results: an easy strategy to test and detect analytical interferences in routine practice. Clinica Chimica Acta, 387, 150-52.
  • Chatenoud L, Baudrihaye MF, Chkoff N, Kreis H, Goldstein G, Bach JF, 1986: Restriction of the human in vivo immune response against the mouse monoclonal antibody OKT3. The Journal of Immunology, 137, 830-38.
  • Covinsky M, Laterza O, Pfeifer JD, Farkas-Szallasi T, Scott MG, 2000: An IgM λ antibody to Escherichia coli produces false-positive results in multiple immunometric assays. Clin Chem, 46, 1157-61.
  • De Rezende, Alves N, Dias MB, Campolina D, Chavez-Olortegui C, Diniz CR, Santos Amaral CF, 1995: Efficacy of antivenom therapy for neutralizing circulating venom antigens in patients stung by Tityus serrulatus scorpions. Am J Trop Med Hyg, 52, 277-80.
  • Eriksson S, Halenius H, Pulkki K, Hellman J, Pettersson K, 2005: Negative interference in cardiac troponin I immunoassays by circulating troponin autoantibodies. Clin Chem, 51, 839-47.
  • Frödin JE , Lefvert AK, Mellstedt H, 1992: The clinical significance of HAMA in patients treated with mouse monoclonal antibodies. Cell biophysics, 21, 153-65.
  • García-González E, Aramendía M, Álvarez-Ballano D, Trincado P, Rello L, 2016: Serum sample containing endogenous antibodies interfering with multiple hormone immunoassays. Laboratory strategies to detect interference. Pract Lab Med, 4, 1-10.
  • Gulbahar O, Degertekin CK, Akturk M, Yalcin MM, Kalan I, Atikeler GF, Altinova AE, Yetkin I, Arslan M, Toruner F, 2015: A case with immunoassay interferences in the measurement of multiple hormones. The Journal of Clinical Endocrinology & Metabolism, 100, 2147-53.
  • Gutiérrez JM, León G, Lomonte B, 2003: Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet, 42, 721-41.
  • Ismail AAA, Walker PL, Barth JH, Lewandowski KC, Jones R, Burr WA, 2002: Wrong biochemistry results: two case reports and observational study in 5310 patients on potentially misleading thyroid-stimulating hormone and gonadotropin immunoassay results. Clin Chem, 48, 2023-29.
  • Ismail AAA, Walker PL, Cawood ML, Barth JH, 2002: Interference in immunoassay is an underestimated problem. Ann Clin Biochem, 39, 366-73.
  • Khattabi A, Soulaymani-Bencheikh R, Achour S, Salmi LR, 2011: Classification of clinical consequences of scorpion stings: consensus development. Trans R Soc Trop Med Hyg, 105, 364-69.
  • Krahn J, Parry DM, Leroux M, Dalton J, 1999: High percentage of false positive cardiac troponin I results in patients with rheumatoid factor. Clin Biochem, 32, 477-80.
  • Marks, Vincent, 2002: False-positive immunoassay results: a multicenter survey of erroneous immunoassay results from assays of 74 analytes in 10 donors from 66 laboratories in seven countries. Clin Chem, 48, 2008-16.
  • McCarthy RC, Ryan FJ, McKenzie CM, 1988: Interference in immunoenzymometric assays caused by IgM anti-mouse IgG antibodies. Arch Pathol Lab Med, 112, 901-07.
  • Natrajan A, Sharpe D, Costello J, Jiang Q, 2010: Enhanced immunoassay sensitivity using chemiluminescent acridinium esters with increased light output. Anal Biochem, 406, 204-13.
  • Rauch P, Zellmer A, Dankbar N, Specht C, Sperling D, 2005: Assayoptimierung: Störeffekte bei Immunoassays erkennen und vermeiden. Laborwelt, 4, 33-39.
  • Sturgeon CM, Viljoen A, 2011: Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem, 48, 418-32.
  • Taylor AE , Keevil B, Huhtaniemi IT, 2015: Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. Eur J Endocrinol, 173, D1-D12.
  • Theakston RDG, Warrell DA, Griffiths E, 2003: Report of a WHO workshop on the standardization and control of antivenoms. Toxicon, 41, 541-57.
  • Valikhanfard-Zanjani E, Mirakabadi AZ, Oryan S, Goodarzi HR, Rajabi M, 2016: Specific Antivenom Ability in Neutralizing Hepatic and Renal Changes 24 Hours after Latrodectus dahli Envenomation. Journal of Arthropod-Borne Diseases, 10(2), 238-245.
  • Thompson M, Ellison SLR, 2008: A review of interference effects and their correction in chemical analysis with special reference to uncertainty. Accred Qual Assur, 10, 82–97.
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Research
Authors

Ataman Gönel

Publication Date December 27, 2018
Submission Date May 12, 2018
Acceptance Date November 19, 2018
Published in Issue Year 2018 Volume: 7 Issue: 2

Cite

APA Gönel, A. (2018). Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması. Harran Üniversitesi Veteriner Fakültesi Dergisi, 7(2), 179-185. https://doi.org/10.31196/huvfd.508979
AMA Gönel A. Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması. Harran Univ Vet Fak Derg. December 2018;7(2):179-185. doi:10.31196/huvfd.508979
Chicago Gönel, Ataman. “Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması”. Harran Üniversitesi Veteriner Fakültesi Dergisi 7, no. 2 (December 2018): 179-85. https://doi.org/10.31196/huvfd.508979.
EndNote Gönel A (December 1, 2018) Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması. Harran Üniversitesi Veteriner Fakültesi Dergisi 7 2 179–185.
IEEE A. Gönel, “Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması”, Harran Univ Vet Fak Derg, vol. 7, no. 2, pp. 179–185, 2018, doi: 10.31196/huvfd.508979.
ISNAD Gönel, Ataman. “Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması”. Harran Üniversitesi Veteriner Fakültesi Dergisi 7/2 (December 2018), 179-185. https://doi.org/10.31196/huvfd.508979.
JAMA Gönel A. Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması. Harran Univ Vet Fak Derg. 2018;7:179–185.
MLA Gönel, Ataman. “Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması”. Harran Üniversitesi Veteriner Fakültesi Dergisi, vol. 7, no. 2, 2018, pp. 179-85, doi:10.31196/huvfd.508979.
Vancouver Gönel A. Akrep Antivenomunun İmmunassay Yöntem Üzerindeki İnterferans Etkisinin Deneysel Araştırılması. Harran Univ Vet Fak Derg. 2018;7(2):179-85.