Research Article
BibTex RIS Cite

Simental İnek Sütü ve Süt Hücrelerinde Katalaz, İndirgenmiş Glutatyon, Malondialdehit, Vitamin C ve Total Protein Düzeyleri Arasındaki İlişkilerin Araştırılması

Year 2022, Volume: 11 Issue: 1, 78 - 83, 15.05.2022
https://doi.org/10.31196/huvfd.1084733

Abstract

Bu çalışmada, Simmental inek sütü ve süt hücrelerinin bazı antioksidan parametreleri, katalaz (CAT) aktiviteleri, indirgenmiş glutatyon (GSH), malondialdehit (MDA), vitamin C (Vit C) ve total protein düzeylerinin belirlenmesi ve bu parametreler arasındaki korelasyonların ortaya çıkarılması amaçlanmıştır. Özel bir çiftlikten klinik olarak sağlıklı 28 inekten toplanan süt örnekleri (her biri 15 mL), California Mastitis Testi (CMT) ile test edilmiş ve CMT negatif örnekler çalışmaya dahil edilmiştir. Kısaca, süt hücreleri santrifüjleme ile 15 mL sütten izole edildi ve ardından sonikasyona tabi tutuldu. Süt ve süt hücresi CAT aktiviteleri, GSH, MDA, Vit C ve TP seviyeleri spektrofotometrik yöntemlerle belirlendi. TP seviyeleri 1 mL sütün süt hücresinde 0.043 ± 0.008 mg ve sütte 34.28 ± 0.656 mg/mL belirlendi. GSH seviyeleri süt hücrelerinde 21.19 ± 1.834 nmol/mg protein, sütte 25.78 ± 3.054 nmol/mL ölçüldü. CAT aktiviteleri süt hücrelerinde 0.13 ± 0.017 U/mg protein ve sütte 2.391 ± 0.277 U/mL bulundu. Sütte MDA seviyeleri 2.27 ± 0.180 nmol/mL, Vit C seviyeleri sütte 68.89 ± 4.226 μg/mL belirlendi. Korelasyonlar açısından: Süt hücresi GSH ve süt GSH seviyeleri, süt hücresi TP düzeyleri ile negatif korelasyon gösterdi (p<0.01). Süt hücresi GSH seviyeleri, süt GSH seviyeleri ile pozitif korelasyon gösterdi (p<0.05). Süt Vit C seviyeleri ile süt TP seviyeleri arasında pozitif korelasyon vardı (p<0.01). Zayıf olmasına rağmen süt CAT aktiviteleri ile süt Vit C düzeyleri arasında pozitif korelasyon vardı (p=0.05). Sonuç olarak, sunulan çalışmada Simmental inek sütü ve süt hücrelerinin bazı biyokimyasal parametreleri (CAT, GSH, MDA, VitC ve TP) değerlendirildi ve tartışıldı. Süt hücrelerinin antioksidan kapasitelerinin artırılabilmesi sayesinde meme sağlığının olumlu etkileneceği düşünülmektedir.

References

  • Aebi H, 1984: Catalase. Methods Enzymol, 105, 121–126.
  • Akalın PP, Başpınar N, Çoyan K, Bucak MN, Güngör Ş, Öztürk C, 2016: Effects of ultrasonication on damaged spermatozoa and mitochondrial activity rate. Turk J Vet Anim Sci, 40, 195–199.
  • Akalın PP, Ergün Y, Başpınar N, Doğruer G, Küçükgül A, Cantekin Z, İşgör M, Saribay M, Koldaş E., Baştan A, Salar S, Pehlivanlar S, 2019: Glucose 6 phosphate dehydrogenase glutathione peroxidase total glutathione and reduced nicotinamide dinucleotide phosphate in milk cells of subclinical mastitic cows. Pol J Vet Sci, 22 (2), 271–278.
  • Akın Z, Akalın PP, Kazak F, Ergün Y, Başpınar N, 2019: The relationships of Glucose-6-Phosphate Dehydrogenase, Glutathione Peroxidase, Nicotinamide Adenine Dinucleotide Phosphate and Glutathione with Milk Quality Parameters. Atatürk University J Vet Sci, 14 (2), 193–200.
  • Ellman G. 1959: Tissue sulphydryl groups. Arch Biochem Biophys, 82 (1), 70–77.
  • Gaweł S, Wardas M, Niedworok E, Wardas P. 2004: Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek, 57 (9-10), 453–455.
  • Grażyna C, Hanna C, Adam A, Magdalena BM. 2017: Natural antioxidants in milk and dairy products. Int J Dairy Technol, 70 (2), 165–178.
  • Gutierrez AM, Boylston TD, Clark S. 2018: Effects of Pro-Oxidants and Antioxidants on the Total Antioxidant Capacity and Lipid Oxidation Products of Milk During Refrigerated Storage. J Food Sci, 83 (2), 275–283.
  • Haag W. 1985: Zur methodik und praktischen Bedeutung der Vitamin C - Best immung be im Rind in Vergangenheit und Gegenwart. Inaugural Dissertation. Justus Liebig Universitaet, Giessen.
  • Hamed H, El Feki A, Gargouri A. 2008: Total and differential bulk cow milk somatic cell counts and their relation with antioxidant factors. C R Biol, 331 (2), 144–151.
  • Kapusta A, Kuczyńska B, Puppel K, 2018: Relationship between the degree of antioxidant protection and the level of malondialdehyde in high-performance Polish Holstein-Friesian cows in peak of lactation. PLoS One, 13 (3), e0193512.
  • Kazak F, Karafakioğlu YS, Akalin PP, 2021: Investigating Antioxidant Potential of Goat Milk Cells: Activities of Glucose-6-Phosphate Dehydrogenase, Glutathione Peroxidase and Levels of Reduced Nicotinamide Adenine Dinucleotide Phosphate, Total Glutathione, Malondialdehyde and Vitamin C. ICBH Abstract Book, pp.146.
  • Kehrli ME, Shuster DE, 1994: Factors affecting milk somatic cells and their role in health of the bovine mammary gland. Int J Dairy Sci, 77 (2), 619–627.
  • Khan IT, Bule M, Ullah R, Nadeem M, Asif S, Niaz K, 2019: The antioxidant components of milk and their role in processing, ripening, and storage: Functional food. Vet World, 12 (1), 12–33.
  • Khastayeva AZ, Zhamurova VS, Mamayeva LA, Kozhabergenov AT Karimov NZ, Muratbekova KM, 2021: Qualitative indicators of milk of Simmental and Holstein cows in different seasons of lactation. Vet World, 14 (4), 956–963.
  • Kitchen BJ, Taylor GC, White IC. 1970: Milk enzymes: their distribution and activity. J Dairy Res, 37 (2), 279–288.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951: Protein measurement with pholin phenol reagent. J Biol Chem, 193 (1), 265–275.
  • Meister A, Anderson ME, 1983: Glutathione. Annu Rev Biochem, 52, 711–760.
  • Ohkawa H, Ohishi N, Yagi K. 1979: Assay for lipit peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95 (2), 351–358.
  • Phillips JD, Griffiths MW. 1987: A note on the use of the Catalasemetre in assessing the quality of milk. J Appl Bacteriol, 62 (3), 223–226.
  • Podhorecká K, Borková M, Šulc M, Seydlová R, Dragounová H, Švejcarová M, Peroutková J, Elich O, 2021: Somatic Cell Count in Goat Milk: An Indirect Quality Indicator. Foods, 10 (5), 1046.
  • Silanikove N, Shapiro F, Shamay A, Leitner G, 2005: Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates. Free Radic Biol Med, 38 (9), 1139–1151.
  • Skibsted LH. 2012: Vitamin and non-vitamin antioxidants and their interaction in food. J Food Drug Anal, 20 (1), 355–358.
  • Szarka A, Tomasskovics B, Bánhegyi G. 2012: The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci, 13 (4), 4458–4483.
  • Weiss WP, Hogan JS, Smith KL. 2004: Changes in vitamin C concentrations in plasma and milk from dairy cows after an intramammary infusion of Escherichia coli. J Dairy Sci, 87 (1), 32–37.
  • Zivkovic JV, Sunaric S, Trutic N, Denić M, Kocić G, Jovanović T, 2015: Antioxidants and Antioxidant Capacity of Human Milk. Acta Fac Med Naissensis, 32 (2), 115–125.

Investigating Relationships between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells

Year 2022, Volume: 11 Issue: 1, 78 - 83, 15.05.2022
https://doi.org/10.31196/huvfd.1084733

Abstract

In this study, to evaluate some antioxidant parameters of Simmental dairy cow’s milk and milk cells, the catalase (CAT), reduced glutathione (GSH), malondialdehyde (MDA), vitamin C (Vit C), and total protein (TP) were determined, and correlations between these parameters were revealed. The milk samples, collected from 28 clinically healthy cows from a private farm, were tested by CMT. Furthermore, CMT negative samples were included in the study. Briefly, milk cells were isolated from 15 mL of milk by centrifugation, and then they were sonicated. Milk and milk cell CAT activities, GSH, MDA, Vit C, and TP levels were determined by spectrophotometric methods. TP levels were 0.043 ± 0.008 mg in milk cell of 1 mL milk and 34.28 ± 0.656 mg/mL in milk. GSH levels were 21.19 ± 1.834 nmol/mg protein in milk cells and 25.78 ± 3.054 nmol/mL in milk. CAT activities were 0.13 ± 0.017 U/mg protein in milk cells and 2.391 ± 0.277 U/mL in milk. MDA levels were 2.27 ± 0.180 nmol/mL and Vit C levels were 68.89 ± 4.226 μg/mL in milk. As regards correlations: Milk cell GSH and milk GSH levels were negatively correlated with milk cell TP levels (p<0.01). Milk cell GSH levels were positively correlated with milk GSH levels (p<0.05). Milk Vit C levels were positively correlated with milk TP levels (p<0.01). Although it was weak, there was a positive correlation between milk CAT activities and milk Vit C levels (p=0.05). In conclusion, some biochemical parameters (CAT, GSH, MDA, Vit C, and TP) of Simmental cow’s milk and milk cells were evaluated and discussed in the present study. It is thought that udder health will be positively affected by increasing the antioxidant capacity of milk cells.

References

  • Aebi H, 1984: Catalase. Methods Enzymol, 105, 121–126.
  • Akalın PP, Başpınar N, Çoyan K, Bucak MN, Güngör Ş, Öztürk C, 2016: Effects of ultrasonication on damaged spermatozoa and mitochondrial activity rate. Turk J Vet Anim Sci, 40, 195–199.
  • Akalın PP, Ergün Y, Başpınar N, Doğruer G, Küçükgül A, Cantekin Z, İşgör M, Saribay M, Koldaş E., Baştan A, Salar S, Pehlivanlar S, 2019: Glucose 6 phosphate dehydrogenase glutathione peroxidase total glutathione and reduced nicotinamide dinucleotide phosphate in milk cells of subclinical mastitic cows. Pol J Vet Sci, 22 (2), 271–278.
  • Akın Z, Akalın PP, Kazak F, Ergün Y, Başpınar N, 2019: The relationships of Glucose-6-Phosphate Dehydrogenase, Glutathione Peroxidase, Nicotinamide Adenine Dinucleotide Phosphate and Glutathione with Milk Quality Parameters. Atatürk University J Vet Sci, 14 (2), 193–200.
  • Ellman G. 1959: Tissue sulphydryl groups. Arch Biochem Biophys, 82 (1), 70–77.
  • Gaweł S, Wardas M, Niedworok E, Wardas P. 2004: Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek, 57 (9-10), 453–455.
  • Grażyna C, Hanna C, Adam A, Magdalena BM. 2017: Natural antioxidants in milk and dairy products. Int J Dairy Technol, 70 (2), 165–178.
  • Gutierrez AM, Boylston TD, Clark S. 2018: Effects of Pro-Oxidants and Antioxidants on the Total Antioxidant Capacity and Lipid Oxidation Products of Milk During Refrigerated Storage. J Food Sci, 83 (2), 275–283.
  • Haag W. 1985: Zur methodik und praktischen Bedeutung der Vitamin C - Best immung be im Rind in Vergangenheit und Gegenwart. Inaugural Dissertation. Justus Liebig Universitaet, Giessen.
  • Hamed H, El Feki A, Gargouri A. 2008: Total and differential bulk cow milk somatic cell counts and their relation with antioxidant factors. C R Biol, 331 (2), 144–151.
  • Kapusta A, Kuczyńska B, Puppel K, 2018: Relationship between the degree of antioxidant protection and the level of malondialdehyde in high-performance Polish Holstein-Friesian cows in peak of lactation. PLoS One, 13 (3), e0193512.
  • Kazak F, Karafakioğlu YS, Akalin PP, 2021: Investigating Antioxidant Potential of Goat Milk Cells: Activities of Glucose-6-Phosphate Dehydrogenase, Glutathione Peroxidase and Levels of Reduced Nicotinamide Adenine Dinucleotide Phosphate, Total Glutathione, Malondialdehyde and Vitamin C. ICBH Abstract Book, pp.146.
  • Kehrli ME, Shuster DE, 1994: Factors affecting milk somatic cells and their role in health of the bovine mammary gland. Int J Dairy Sci, 77 (2), 619–627.
  • Khan IT, Bule M, Ullah R, Nadeem M, Asif S, Niaz K, 2019: The antioxidant components of milk and their role in processing, ripening, and storage: Functional food. Vet World, 12 (1), 12–33.
  • Khastayeva AZ, Zhamurova VS, Mamayeva LA, Kozhabergenov AT Karimov NZ, Muratbekova KM, 2021: Qualitative indicators of milk of Simmental and Holstein cows in different seasons of lactation. Vet World, 14 (4), 956–963.
  • Kitchen BJ, Taylor GC, White IC. 1970: Milk enzymes: their distribution and activity. J Dairy Res, 37 (2), 279–288.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951: Protein measurement with pholin phenol reagent. J Biol Chem, 193 (1), 265–275.
  • Meister A, Anderson ME, 1983: Glutathione. Annu Rev Biochem, 52, 711–760.
  • Ohkawa H, Ohishi N, Yagi K. 1979: Assay for lipit peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95 (2), 351–358.
  • Phillips JD, Griffiths MW. 1987: A note on the use of the Catalasemetre in assessing the quality of milk. J Appl Bacteriol, 62 (3), 223–226.
  • Podhorecká K, Borková M, Šulc M, Seydlová R, Dragounová H, Švejcarová M, Peroutková J, Elich O, 2021: Somatic Cell Count in Goat Milk: An Indirect Quality Indicator. Foods, 10 (5), 1046.
  • Silanikove N, Shapiro F, Shamay A, Leitner G, 2005: Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates. Free Radic Biol Med, 38 (9), 1139–1151.
  • Skibsted LH. 2012: Vitamin and non-vitamin antioxidants and their interaction in food. J Food Drug Anal, 20 (1), 355–358.
  • Szarka A, Tomasskovics B, Bánhegyi G. 2012: The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci, 13 (4), 4458–4483.
  • Weiss WP, Hogan JS, Smith KL. 2004: Changes in vitamin C concentrations in plasma and milk from dairy cows after an intramammary infusion of Escherichia coli. J Dairy Sci, 87 (1), 32–37.
  • Zivkovic JV, Sunaric S, Trutic N, Denić M, Kocić G, Jovanović T, 2015: Antioxidants and Antioxidant Capacity of Human Milk. Acta Fac Med Naissensis, 32 (2), 115–125.
There are 26 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research
Authors

Filiz Kazak 0000-0002-9065-394X

Pinar Peker 0000-0002-6991-3727

Early Pub Date May 15, 2022
Publication Date May 15, 2022
Submission Date March 8, 2022
Acceptance Date April 25, 2022
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Kazak, F., & Peker, P. (2022). Investigating Relationships between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells. Harran Üniversitesi Veteriner Fakültesi Dergisi, 11(1), 78-83. https://doi.org/10.31196/huvfd.1084733
AMA Kazak F, Peker P. Investigating Relationships between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells. Harran Univ Vet Fak Derg. May 2022;11(1):78-83. doi:10.31196/huvfd.1084733
Chicago Kazak, Filiz, and Pinar Peker. “Investigating Relationships Between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells”. Harran Üniversitesi Veteriner Fakültesi Dergisi 11, no. 1 (May 2022): 78-83. https://doi.org/10.31196/huvfd.1084733.
EndNote Kazak F, Peker P (May 1, 2022) Investigating Relationships between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells. Harran Üniversitesi Veteriner Fakültesi Dergisi 11 1 78–83.
IEEE F. Kazak and P. Peker, “Investigating Relationships between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells”, Harran Univ Vet Fak Derg, vol. 11, no. 1, pp. 78–83, 2022, doi: 10.31196/huvfd.1084733.
ISNAD Kazak, Filiz - Peker, Pinar. “Investigating Relationships Between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells”. Harran Üniversitesi Veteriner Fakültesi Dergisi 11/1 (May 2022), 78-83. https://doi.org/10.31196/huvfd.1084733.
JAMA Kazak F, Peker P. Investigating Relationships between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells. Harran Univ Vet Fak Derg. 2022;11:78–83.
MLA Kazak, Filiz and Pinar Peker. “Investigating Relationships Between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells”. Harran Üniversitesi Veteriner Fakültesi Dergisi, vol. 11, no. 1, 2022, pp. 78-83, doi:10.31196/huvfd.1084733.
Vancouver Kazak F, Peker P. Investigating Relationships between Catalase, Reduced Glutathione, Malondialdehyde, Vitamin C, and Total Protein Levels in Simmental Cow’s Milk and Milk Cells. Harran Univ Vet Fak Derg. 2022;11(1):78-83.