Research Article
BibTex RIS Cite

Exploring Shape Variance in Waterbirds' Pad Feet: A Geometric Morphometric Analysis

Year 2024, Volume: 13 Issue: 2, 141 - 147, 18.12.2024
https://doi.org/10.31196/huvfd.1540571

Abstract

Waterbirds usually have webbed feet, which help them move easily through water. These pad feet fall into four main categories: palmate, semipalmate, totipalmate, and lobate. In this study, morphological diversity among the pad feet of different waterbird breeds such as the West Indian whistling duck (Anas bahamensis), mandarin duck (Aix galericulata), red-breasted goose (Branta ruficollis), wood duck (Aix sponsa), mute swan (Cygnus olor), greylag goose (Anser anser), mallard (Anas platyrhynchos), Pekin duck (Anas platyrhynchos domesticus), redhead duck (Aythya americana), Egyptian goose (Alopochen aegyptiaca), and pelican (Pelecanus onocrotalus) was examined by the geometric morphometric method. 2D images of 12 waterbirds' pad feet from different parts of Türkiye were analyzed from a dorsal view. In total thirteen landmarks were used. The analysis focused on principal component 1 and principal component 2 values. Principal component 1 shows slightly greater changes occurring on the lateral toes II and IV, as well as in the interdigital webbing below the average. Principal component 2 also reveals greater shape changes on the toes II and IV, which are more lateral. Geometric morphometric analysis proves valuable in identifying variations in the shape of the pad feet among various breeds of waterbirds, making it an effective tool for taxonomic purposes.

Thanks

The data in this study were obtained from the TÜBİTAK 2209a project titled "Examination of Foot and Toe Shapes of Waterbirds Using Geometric Morphometric Analysis.

References

  • Aytek Aİ, 2017: Geometrik morfometri. Masrop E-Dergi, 11(17), 1-7.
  • Birkhead TR, Van Balen S, 2008: Bird-keeping and the development of ornithological science. Arch Nat Hist, 35(2), 281-305.
  • Birkhead TR, Thompson JE, Biggins JD, 2017: Egg shape in the Common Guillemot Uria aalge and Brünnich’s Guillemot U. lomvia: not a rolling matter? J Ornithol, 158, 679-685.
  • Birkhead T, 2018: The wonderful Mr Willughby: The first true ornithologist. Bloomsbury Publishing, London, UK. Bookstein FL, 1991: Morphometric tools for landmark data: Geometry and biology. Cambridge University Press, New York, USA.
  • Bookstein, FL,1997: Morphometric tools for landmark data. Cambridge University Press, UK.
  • Boz İ, Manuta N, Özkan E, Kahvecioğlu O, Pazvant G, Gezer IN, Hadžiomerović N, Szara T, Altundağ Y, Gündemir O, 2023: Geometric Morphometry in Veterinary Anatomy. Veterinaria, 72(1), 15-27.
  • Brown WM, Finn C, Breedlove SM, 2002: Sexual dimorphism in digit length ratios of laboratory mice. Anat Rec, 267(3), 231-234.
  • Cherry P, Morris TR, 2008: Domestic duck production: Science and Practice. CABI, Wallingford, Oxfordshire, UK, Cambridge, MA
  • Demircioğlu İ, Demiraslan Y, Gürbüz İ, Dayan MO, 2021: Geometric morphometric analysis of skull and mandible in Awassi ewe and ram. Kafkas Univ Vet Fak Derg, 27(1), 43-9.
  • Floate KD, Fox AS, 2000: Flies under stress: a test of fluctuating asymmetry as a biomonitor of environmental quality. Ecol Appl, 10(5), 1541-1550.
  • Gill FB, 2007: Parents and their offspring In Ornithology. 3rd ed., 467-502, WH Freeman and Company, New York.
  • Gündemir O, Özkan E, Dayan MO, Aydoğdu S, 2020: Sexual analysis in Turkey (Meleagris gallopavo) neurocranium using geometric morphometric methods. Turk J Vet Anim Sci, 44(3), 681-687.
  • Höfling E, Abourachid A, 2021: The skin of birds' feet: Morphological adaptations of the plantar surface. J Morphol, 282(1), 88-97.
  • Johnsgard PA, 2010: Ducks, geese, and swans of the world. University of Nebraska Press, Lincoln, NE. Kear J, 2005: Ducks, Geese and Swans. Oxford University Press, New York, USA.
  • Klingenberg CP, McIntyre GS, 1998: Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evol, 52, 1363-1375.
  • Klingenberg CP, Zaklan SD, 2000: Morphological integration between developmental compartments in the Drosophila wing. Evol, 54:1273–1285.
  • Klingenberg CP, Barluenga M, Meyer A, 2002: Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evol, 56, 1909-1920.
  • Lin Y, Xu H, 2017: Morphological variation of waterbird feet in response to different habitats: a comparative study. Avian Ecol Behav, 29(3), 245-256.
  • Livezey BC, 1986: A phylogenetic analysis of recent anseriform genera using morphological characters. Auk, 103(4), 737-754.
  • Lovette IJ, Fitzpatrick JW, 2016: Handbook of Bird Biology. 3rd Ed., Wiley-Blackwell.
  • Madge S, Burn H, 1988: Waterfowl: An Identification Guide to the Ducks, Geese, and Swans of the World. Houghton Mifflin Harcourt.
  • Manuta N, Gündemir O, Yalin EE, Karabağli M, Uçmak ZG, Dal GE, Gürbüz İ, 2023: Pelvis shape analysis with geometric morphometry in crossbreed cats. Anat Histol Embryol, 52(4), 611-618.
  • Manuta N, Çakar B, Gündemir O, Spataru MC, 2024: Shape and size variations of distal phalanges in cattle. Animals 14 (2), 194.
  • Ogden JC, Davis RA, Whitlock DH, 1983: Ecology of the Brown Pelican in Florida. University Presses of Florida.
  • Proctor NS, Lynch PJ, 1993: Manual of ornithology: avian structure & function. Yale University Press.
  • Raikow RJ, 1985: Locomotor system in Form and Function in Birds. Vol. 3, King AS, McLelland J (Ed), 57-147, Academic Press.
  • Rico-Guevara A, Sustaita D, Gussekloo S, Olsen A, Bright J, Corbin C, Dudley R, 2019: Feeding in birds: thriving in terrestrial, aquatic, and aerial niches In: Feeding in Vertebrates. Bels V, Whishaw IQ (ed), 643-693, Springer International Publishing.
  • Rohlf FJ, Slice D, 1990: Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool, 39, 40-59.
  • Rohlf FJ, Marcus LF, 1993: A revolution in morphometrics. Trends Ecol Evol, 8, 129–132.
  • Rohlf FJ, 1997: tpsDig: digitize landmarks and outlines. Version 2.29. Available from: http://life.bio.sunysb.edu/morph/.
  • Rohlf FJ, 2004: TpsUtil, file utility program. Stony Brook: Department of Ecology and Evolution, State University of New York.
  • Sargata-Vicens J, del Hoyo J, Elliot A, Imboden C 1992: Handbook of the Birds of the World: Ostrich to Ducks. Lynx Edicions, Barcelona, Spain.
  • Segesdi M, Pecsics T, 2022: Trends of avian locomotion in water–an overview of swimming styles. Ornis Hung, 30(1), 30-46.
  • Serrano D, Tella JL, 2018: Evolutionary implications of foot morphology in waterbirds. Evol Ecol, 32(2), 123-135.
  • Szara T, Duro S, Gündemir O, Demircioğlu İ, 2022: Sex determination in Japanese Quails (Coturnix japonica) using geometric morphometrics of the skull. Animals, 12(3), 302.
  • Tokeshi M, 2009: Species coexistence: ecological and evolutionary perspectives. John Wiley & Sons.
  • Tokita M, Matsushita H, Asakura Y, 2020: Developmental mechanisms underlying webbed foot morphological diversity in waterbirds. Sci Rep, 10(1), 8028.
  • Winkler H, Leisler B, 1985: Morphological aspects of habitat selection in birds In Habitat selection in birds. Cody ML (Ed), 415, 434, Academic Press, Orlando, Florida.
  • Zelditch M, Swiderski D, Sheets H, Fink W, 2004: Geometric morphometrics for biologists: A primer. Elsevier Academic Press, London.

Su Kuşlarının Ayak Şekil Varyasyonlarının İncelenmesi: Geometrik Morfometrik Analiz

Year 2024, Volume: 13 Issue: 2, 141 - 147, 18.12.2024
https://doi.org/10.31196/huvfd.1540571

Abstract

Su kuşları genellikle suyun içinde kolayca hareket etmelerine yardımcı olan perdeli ayaklara sahiptir. Bu perdeli ayaklar dört ana kategoriye ayrılır: palmate, semipalmate, totipalmate ve lobate. Bu çalışmada, Batı Hint düdükçü ördeği (Anas bahamensis), mandarin ördeği (Aix galericulata), kızıl göğüslü kaz (Branta ruficollis), ağaç ördeği (Aix sponsa), mute kuğusu (Cygnus olor), boz kaz (Anser anser), yeşilbaş ördek (Anas platyrhynchos), Pekin ördeği (Anas platyrhynchos domesticus), kızılbaş ördek (Aythya americana), Mısır kazı (Alopochen aegyptiaca) ve pelikan (Pelecanus onocrotalus) gibi farklı su kuşu türlerinin perdeli ayaklarındaki morfolojik çeşitlilik geometrik morfometrik yöntem ile incelenmiştir. Türkiye'nin farklı bölgelerinden alınan 12 su kuşunun perdeli ayaklarının dorsal görünümden 2D görüntüleri analiz edilmiştir. Toplamda on üç belirleyici nokta kullanılmıştır. Analiz, temel bileşen 1 ve temel bileşen 2 değerlerine odaklanmıştır. Temel bileşen 1, yan parmaklar II ve IV ile ortalama altındaki parmak arası perdenin olduğu bölgede meydana gelen hafif değişiklikleri gösterirken, temel bileşen 2, daha yanlarda yer alan parmaklar II ve IV'teki şekil değişikliklerini ortaya koymaktadır. Geometrik morfometrik analiz, su kuşlarının perdeli ayaklarının şekil varyasyonlarını belirlemede değerli bir araç olduğunu ve bu analizlerin taksonomik amaçlar için etkili olduğunu kanıtlamaktadır.

Thanks

Çalışmadaki veriler “Geometrik Morfometrik Analiz İle Su Kuşlarının Ayak Ve Parmak Şekillerinin İncelenmesi” isimli TÜBİTAK 2209a projesinden elde edilmiştir.

References

  • Aytek Aİ, 2017: Geometrik morfometri. Masrop E-Dergi, 11(17), 1-7.
  • Birkhead TR, Van Balen S, 2008: Bird-keeping and the development of ornithological science. Arch Nat Hist, 35(2), 281-305.
  • Birkhead TR, Thompson JE, Biggins JD, 2017: Egg shape in the Common Guillemot Uria aalge and Brünnich’s Guillemot U. lomvia: not a rolling matter? J Ornithol, 158, 679-685.
  • Birkhead T, 2018: The wonderful Mr Willughby: The first true ornithologist. Bloomsbury Publishing, London, UK. Bookstein FL, 1991: Morphometric tools for landmark data: Geometry and biology. Cambridge University Press, New York, USA.
  • Bookstein, FL,1997: Morphometric tools for landmark data. Cambridge University Press, UK.
  • Boz İ, Manuta N, Özkan E, Kahvecioğlu O, Pazvant G, Gezer IN, Hadžiomerović N, Szara T, Altundağ Y, Gündemir O, 2023: Geometric Morphometry in Veterinary Anatomy. Veterinaria, 72(1), 15-27.
  • Brown WM, Finn C, Breedlove SM, 2002: Sexual dimorphism in digit length ratios of laboratory mice. Anat Rec, 267(3), 231-234.
  • Cherry P, Morris TR, 2008: Domestic duck production: Science and Practice. CABI, Wallingford, Oxfordshire, UK, Cambridge, MA
  • Demircioğlu İ, Demiraslan Y, Gürbüz İ, Dayan MO, 2021: Geometric morphometric analysis of skull and mandible in Awassi ewe and ram. Kafkas Univ Vet Fak Derg, 27(1), 43-9.
  • Floate KD, Fox AS, 2000: Flies under stress: a test of fluctuating asymmetry as a biomonitor of environmental quality. Ecol Appl, 10(5), 1541-1550.
  • Gill FB, 2007: Parents and their offspring In Ornithology. 3rd ed., 467-502, WH Freeman and Company, New York.
  • Gündemir O, Özkan E, Dayan MO, Aydoğdu S, 2020: Sexual analysis in Turkey (Meleagris gallopavo) neurocranium using geometric morphometric methods. Turk J Vet Anim Sci, 44(3), 681-687.
  • Höfling E, Abourachid A, 2021: The skin of birds' feet: Morphological adaptations of the plantar surface. J Morphol, 282(1), 88-97.
  • Johnsgard PA, 2010: Ducks, geese, and swans of the world. University of Nebraska Press, Lincoln, NE. Kear J, 2005: Ducks, Geese and Swans. Oxford University Press, New York, USA.
  • Klingenberg CP, McIntyre GS, 1998: Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evol, 52, 1363-1375.
  • Klingenberg CP, Zaklan SD, 2000: Morphological integration between developmental compartments in the Drosophila wing. Evol, 54:1273–1285.
  • Klingenberg CP, Barluenga M, Meyer A, 2002: Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evol, 56, 1909-1920.
  • Lin Y, Xu H, 2017: Morphological variation of waterbird feet in response to different habitats: a comparative study. Avian Ecol Behav, 29(3), 245-256.
  • Livezey BC, 1986: A phylogenetic analysis of recent anseriform genera using morphological characters. Auk, 103(4), 737-754.
  • Lovette IJ, Fitzpatrick JW, 2016: Handbook of Bird Biology. 3rd Ed., Wiley-Blackwell.
  • Madge S, Burn H, 1988: Waterfowl: An Identification Guide to the Ducks, Geese, and Swans of the World. Houghton Mifflin Harcourt.
  • Manuta N, Gündemir O, Yalin EE, Karabağli M, Uçmak ZG, Dal GE, Gürbüz İ, 2023: Pelvis shape analysis with geometric morphometry in crossbreed cats. Anat Histol Embryol, 52(4), 611-618.
  • Manuta N, Çakar B, Gündemir O, Spataru MC, 2024: Shape and size variations of distal phalanges in cattle. Animals 14 (2), 194.
  • Ogden JC, Davis RA, Whitlock DH, 1983: Ecology of the Brown Pelican in Florida. University Presses of Florida.
  • Proctor NS, Lynch PJ, 1993: Manual of ornithology: avian structure & function. Yale University Press.
  • Raikow RJ, 1985: Locomotor system in Form and Function in Birds. Vol. 3, King AS, McLelland J (Ed), 57-147, Academic Press.
  • Rico-Guevara A, Sustaita D, Gussekloo S, Olsen A, Bright J, Corbin C, Dudley R, 2019: Feeding in birds: thriving in terrestrial, aquatic, and aerial niches In: Feeding in Vertebrates. Bels V, Whishaw IQ (ed), 643-693, Springer International Publishing.
  • Rohlf FJ, Slice D, 1990: Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool, 39, 40-59.
  • Rohlf FJ, Marcus LF, 1993: A revolution in morphometrics. Trends Ecol Evol, 8, 129–132.
  • Rohlf FJ, 1997: tpsDig: digitize landmarks and outlines. Version 2.29. Available from: http://life.bio.sunysb.edu/morph/.
  • Rohlf FJ, 2004: TpsUtil, file utility program. Stony Brook: Department of Ecology and Evolution, State University of New York.
  • Sargata-Vicens J, del Hoyo J, Elliot A, Imboden C 1992: Handbook of the Birds of the World: Ostrich to Ducks. Lynx Edicions, Barcelona, Spain.
  • Segesdi M, Pecsics T, 2022: Trends of avian locomotion in water–an overview of swimming styles. Ornis Hung, 30(1), 30-46.
  • Serrano D, Tella JL, 2018: Evolutionary implications of foot morphology in waterbirds. Evol Ecol, 32(2), 123-135.
  • Szara T, Duro S, Gündemir O, Demircioğlu İ, 2022: Sex determination in Japanese Quails (Coturnix japonica) using geometric morphometrics of the skull. Animals, 12(3), 302.
  • Tokeshi M, 2009: Species coexistence: ecological and evolutionary perspectives. John Wiley & Sons.
  • Tokita M, Matsushita H, Asakura Y, 2020: Developmental mechanisms underlying webbed foot morphological diversity in waterbirds. Sci Rep, 10(1), 8028.
  • Winkler H, Leisler B, 1985: Morphological aspects of habitat selection in birds In Habitat selection in birds. Cody ML (Ed), 415, 434, Academic Press, Orlando, Florida.
  • Zelditch M, Swiderski D, Sheets H, Fink W, 2004: Geometric morphometrics for biologists: A primer. Elsevier Academic Press, London.
There are 39 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section Research
Authors

Ermiş Özkan 0000-0002-5000-5075

Ecenur Mücaviroğlu 0009-0009-0440-9018

Manuta Nicoleta 0000-0002-2537-2973

Ebuderda Günay 0000-0002-9767-7469

Publication Date December 18, 2024
Submission Date August 29, 2024
Acceptance Date November 6, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Özkan, E., Mücaviroğlu, E., Nicoleta, M., Günay, E. (2024). Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis. Harran Üniversitesi Veteriner Fakültesi Dergisi, 13(2), 141-147. https://doi.org/10.31196/huvfd.1540571
AMA Özkan E, Mücaviroğlu E, Nicoleta M, Günay E. Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis. Harran Univ Vet Fak Derg. December 2024;13(2):141-147. doi:10.31196/huvfd.1540571
Chicago Özkan, Ermiş, Ecenur Mücaviroğlu, Manuta Nicoleta, and Ebuderda Günay. “Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis”. Harran Üniversitesi Veteriner Fakültesi Dergisi 13, no. 2 (December 2024): 141-47. https://doi.org/10.31196/huvfd.1540571.
EndNote Özkan E, Mücaviroğlu E, Nicoleta M, Günay E (December 1, 2024) Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis. Harran Üniversitesi Veteriner Fakültesi Dergisi 13 2 141–147.
IEEE E. Özkan, E. Mücaviroğlu, M. Nicoleta, and E. Günay, “Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis”, Harran Univ Vet Fak Derg, vol. 13, no. 2, pp. 141–147, 2024, doi: 10.31196/huvfd.1540571.
ISNAD Özkan, Ermiş et al. “Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis”. Harran Üniversitesi Veteriner Fakültesi Dergisi 13/2 (December 2024), 141-147. https://doi.org/10.31196/huvfd.1540571.
JAMA Özkan E, Mücaviroğlu E, Nicoleta M, Günay E. Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis. Harran Univ Vet Fak Derg. 2024;13:141–147.
MLA Özkan, Ermiş et al. “Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis”. Harran Üniversitesi Veteriner Fakültesi Dergisi, vol. 13, no. 2, 2024, pp. 141-7, doi:10.31196/huvfd.1540571.
Vancouver Özkan E, Mücaviroğlu E, Nicoleta M, Günay E. Exploring Shape Variance in Waterbirds’ Pad Feet: A Geometric Morphometric Analysis. Harran Univ Vet Fak Derg. 2024;13(2):141-7.