Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 3, 240 - 244, 15.12.2018

Abstract

References

  • 1. Kostagiannakopoulou, C., Loutas, T. H., Sotiriadis, G., Markou, A., & Kostopoulos, V. (2015). On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species. Composites Science and Technology, 118: 217-225.
  • 2. S. Tsantzalis, P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, K. Friedrich, Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale, Compos. A Appl. Sci. Manuf. 2007. 38: 1076-1081.
  • 3. Jarukumjorn, K., & Suppakarn, N. Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Composites Part B: Engineering, 2009. 40(7): 623-627.
  • 4. Sarasini, F., Tirillò, J., Valente, M., Valente, T., Cioffi, S., Iannace, S., & Sorrentino, L. Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Composites Part A: Applied Science and Manufacturing, 2013. 47: 109-123.
  • 5. V. Kostopoulos, P. Karapappas, P. Tsotra, A. Paipetis, A. Vavouliotis, Enhanced fracture properties of carbon reinforced composites by the addition of multiwall carbon nanotubes, J. Compos. Mater. 2009. 43: 977-985.
  • 6. Alsaadi, M., Erkliğ, A., & Albu-khaleefah, K. Effect of Pistachio Shell Particle Content on the Mechanical Properties of Polymer Composite. Arabian Journal for Science and Engineering, 2018: 1-8.
  • 7. R.J. Sager, P.J. Klein, D.C. Davis, D.C. Lagoudas, G.L. Warren, H. Sue, Interlaminar fracture toughness of woven fabric composite laminates with carbon nanotube/interleaf films, J. Appl. Polym. Sci. 2011. 121(4): 2394-2405.
  • 8. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, et al. Electromechanical resonators from graphene sheets. Science 2007. 315(5811): 490.
  • 9. Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A., & Avouris, P. Ultrafast graphene photodetector. Nature nanotechnology, 2009. 4(12): 839.
  • 10. Jeevananda, T., Kim, N. H., Lee, J. H., Basavarajaiah, S., Urs, D., & Ranganathaiah, C. Investigation of multi‐walled carbon nanotube‐reinforced high‐density polyethylene/carbon black nanocomposites using electrical, DSC and positron lifetime spectroscopy techniques. Polymer International, 2009. 58(7): 775-780.
  • 11. Geng, Y., Liu, M. Y., Li, J., Shi, X. M., & Kim, J. K. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2008. 39(12): 1876-1883.
  • 12. Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 2010. 35(3): 357-401.
  • 13. Park, O. K., Jeevananda, T., Kim, N. H., Kim, S. I., & Lee, J. H. Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scripta materialia, 2009. 60(7): 551-554.
  • 14. Li, Y., Wang, S., Wang, Q., & Xing, M. Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: A molecular dynamics study. Carbon, 2018. 129: 504-509.
  • 15. Nguyen, V. T., Nguyen, D. K., Ngo, D. T., Tran, P., & Nguyen, D. D. Nonlinear dynamic response and vibration of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) shear deformable plates with temperature dependence material properties and surrounded on elastic foundations. Journal of Thermal Stresses, 2017. 40(10): 1254-1274.
  • 16. King, J. A., Klimek, D. R., Miskioglu, I., & Odegard, G. M. Mechanical properties of graphene nanoplatelet/epoxy composites. Journal of Applied Polymer Science, 2013. 128(6): 4217-4223.
  • 17. Chatterjee, S., Nafezarefi, F., Tai, N. H., Schlagenhauf, L., Nüesch, F. A., & Chu, B. T. T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 2012. 50(15): 5380-5386.
  • 18. ASTM, "D638-10 Standard test method for tensile properties of plastics,” ASTM International, West Conshohocken, PA (2010).
  • 19. ASTM, Inernational. "Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials." ASTM D790-07 (2007).
  • 20. Du, J., & Cheng, H. M. The fabrication, properties, and uses of graphene/polymer composites. Macromolecular Chemistry and Physics, 2012. 213(10‐11): 1060-1077.
  • 21. Bulut, M. Mechanical characterization of Basalt/epoxy composite laminates containing graphene nanopellets. Composites Part B: Engineering, 2017. 122: 71-78.
  • 22. Du, X., Zhou, H., Sun, W., Liu, H. Y., Zhou, G., Zhou, H., & Mai, Y. W. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Composites Science and Technology, 2017. 140: 123-133.
  • 23. Zaman I, Kuan HC, Dai JF, Kawashima N, Michelmore A, Sovi A, et al. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale, 2012. 4(15): 4578–86.
  • 24. Rafiee MA, Rafiee J, Wang Z, Song HH, Yu ZZ, Koratkar N. Enhanced mechanical properties of nanocomposites at lowgraphene content. ACS Nano, 2009. 3(12): 3884–90.
  • 25. Desai T, Keblinski P, Kumar SK. Molecular dynamics simulations of polymer transport in nanocomposites. J Chem Phys 2005, 122(13): 134910.

On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior

Year 2018, Volume: 2 Issue: 3, 240 - 244, 15.12.2018

Abstract

This study aimed to
investigate the effect of graphene nanoplatelets (GnPs) on the tensile and
flexural properties of fiber reinforced composite material. For this purpose;
an experimental study was conducted using composite materials which were
manufactured with [(0/90)6]s glass fiber and epoxy matrix
by vacuum assisted resin transfer method. Glass fiber reinforced (GFR) epoxy
composite plates were manufactured with various graphene nanoplatelets content
such 0, 0.1, 0.25 and 0.5 wt% inclusion. Maximum tensile and flexural strength
values were obtained in 0.1 wt% GnPs filled composites. After this weight
content, decreasing trend in the strength values was observed. When fractured
specimens were examined, failure modes were supported the test results also.
Higher contents of GnPs were resulted as agglomeration in matrix mixture lead
to impurities and stress concentrations, thus lower strength values were
obtained in composite.  

References

  • 1. Kostagiannakopoulou, C., Loutas, T. H., Sotiriadis, G., Markou, A., & Kostopoulos, V. (2015). On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species. Composites Science and Technology, 118: 217-225.
  • 2. S. Tsantzalis, P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, K. Friedrich, Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale, Compos. A Appl. Sci. Manuf. 2007. 38: 1076-1081.
  • 3. Jarukumjorn, K., & Suppakarn, N. Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Composites Part B: Engineering, 2009. 40(7): 623-627.
  • 4. Sarasini, F., Tirillò, J., Valente, M., Valente, T., Cioffi, S., Iannace, S., & Sorrentino, L. Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Composites Part A: Applied Science and Manufacturing, 2013. 47: 109-123.
  • 5. V. Kostopoulos, P. Karapappas, P. Tsotra, A. Paipetis, A. Vavouliotis, Enhanced fracture properties of carbon reinforced composites by the addition of multiwall carbon nanotubes, J. Compos. Mater. 2009. 43: 977-985.
  • 6. Alsaadi, M., Erkliğ, A., & Albu-khaleefah, K. Effect of Pistachio Shell Particle Content on the Mechanical Properties of Polymer Composite. Arabian Journal for Science and Engineering, 2018: 1-8.
  • 7. R.J. Sager, P.J. Klein, D.C. Davis, D.C. Lagoudas, G.L. Warren, H. Sue, Interlaminar fracture toughness of woven fabric composite laminates with carbon nanotube/interleaf films, J. Appl. Polym. Sci. 2011. 121(4): 2394-2405.
  • 8. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, et al. Electromechanical resonators from graphene sheets. Science 2007. 315(5811): 490.
  • 9. Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A., & Avouris, P. Ultrafast graphene photodetector. Nature nanotechnology, 2009. 4(12): 839.
  • 10. Jeevananda, T., Kim, N. H., Lee, J. H., Basavarajaiah, S., Urs, D., & Ranganathaiah, C. Investigation of multi‐walled carbon nanotube‐reinforced high‐density polyethylene/carbon black nanocomposites using electrical, DSC and positron lifetime spectroscopy techniques. Polymer International, 2009. 58(7): 775-780.
  • 11. Geng, Y., Liu, M. Y., Li, J., Shi, X. M., & Kim, J. K. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2008. 39(12): 1876-1883.
  • 12. Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 2010. 35(3): 357-401.
  • 13. Park, O. K., Jeevananda, T., Kim, N. H., Kim, S. I., & Lee, J. H. Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scripta materialia, 2009. 60(7): 551-554.
  • 14. Li, Y., Wang, S., Wang, Q., & Xing, M. Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: A molecular dynamics study. Carbon, 2018. 129: 504-509.
  • 15. Nguyen, V. T., Nguyen, D. K., Ngo, D. T., Tran, P., & Nguyen, D. D. Nonlinear dynamic response and vibration of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) shear deformable plates with temperature dependence material properties and surrounded on elastic foundations. Journal of Thermal Stresses, 2017. 40(10): 1254-1274.
  • 16. King, J. A., Klimek, D. R., Miskioglu, I., & Odegard, G. M. Mechanical properties of graphene nanoplatelet/epoxy composites. Journal of Applied Polymer Science, 2013. 128(6): 4217-4223.
  • 17. Chatterjee, S., Nafezarefi, F., Tai, N. H., Schlagenhauf, L., Nüesch, F. A., & Chu, B. T. T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 2012. 50(15): 5380-5386.
  • 18. ASTM, "D638-10 Standard test method for tensile properties of plastics,” ASTM International, West Conshohocken, PA (2010).
  • 19. ASTM, Inernational. "Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials." ASTM D790-07 (2007).
  • 20. Du, J., & Cheng, H. M. The fabrication, properties, and uses of graphene/polymer composites. Macromolecular Chemistry and Physics, 2012. 213(10‐11): 1060-1077.
  • 21. Bulut, M. Mechanical characterization of Basalt/epoxy composite laminates containing graphene nanopellets. Composites Part B: Engineering, 2017. 122: 71-78.
  • 22. Du, X., Zhou, H., Sun, W., Liu, H. Y., Zhou, G., Zhou, H., & Mai, Y. W. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Composites Science and Technology, 2017. 140: 123-133.
  • 23. Zaman I, Kuan HC, Dai JF, Kawashima N, Michelmore A, Sovi A, et al. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale, 2012. 4(15): 4578–86.
  • 24. Rafiee MA, Rafiee J, Wang Z, Song HH, Yu ZZ, Koratkar N. Enhanced mechanical properties of nanocomposites at lowgraphene content. ACS Nano, 2009. 3(12): 3884–90.
  • 25. Desai T, Keblinski P, Kumar SK. Molecular dynamics simulations of polymer transport in nanocomposites. J Chem Phys 2005, 122(13): 134910.
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Nurettin Furkan Doğan 0000-0002-2728-8660

Ahmet Erkliğ

Publication Date December 15, 2018
Submission Date April 2, 2018
Acceptance Date April 18, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

APA Doğan, N. F., & Erkliğ, A. (2018). On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior. International Advanced Researches and Engineering Journal, 2(3), 240-244.
AMA Doğan NF, Erkliğ A. On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior. Int. Adv. Res. Eng. J. December 2018;2(3):240-244.
Chicago Doğan, Nurettin Furkan, and Ahmet Erkliğ. “On the Effect of Nano Particle Inclusion in Fiber Reinforced Composite Tensile and Flexural Behavior”. International Advanced Researches and Engineering Journal 2, no. 3 (December 2018): 240-44.
EndNote Doğan NF, Erkliğ A (December 1, 2018) On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior. International Advanced Researches and Engineering Journal 2 3 240–244.
IEEE N. F. Doğan and A. Erkliğ, “On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior”, Int. Adv. Res. Eng. J., vol. 2, no. 3, pp. 240–244, 2018.
ISNAD Doğan, Nurettin Furkan - Erkliğ, Ahmet. “On the Effect of Nano Particle Inclusion in Fiber Reinforced Composite Tensile and Flexural Behavior”. International Advanced Researches and Engineering Journal 2/3 (December 2018), 240-244.
JAMA Doğan NF, Erkliğ A. On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior. Int. Adv. Res. Eng. J. 2018;2:240–244.
MLA Doğan, Nurettin Furkan and Ahmet Erkliğ. “On the Effect of Nano Particle Inclusion in Fiber Reinforced Composite Tensile and Flexural Behavior”. International Advanced Researches and Engineering Journal, vol. 2, no. 3, 2018, pp. 240-4.
Vancouver Doğan NF, Erkliğ A. On the effect of nano particle inclusion in fiber reinforced composite tensile and flexural behavior. Int. Adv. Res. Eng. J. 2018;2(3):240-4.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.