Research Article
BibTex RIS Cite

Influences of post-weld artificial aging on microstructural and tensile properties of friction stir-welded Al-Zn-Mg-Si-Cu aluminum alloy joints

Year 2024, Volume: 8 Issue: 2, 76 - 83
https://doi.org/10.35860/iarej.1484578

Abstract

In this study, the effect of heat treatment on the mechanical and microstructural properties of welded joints after friction stir welding of age-hardenable Al-Zn-Mg-Si-Cu wrought aluminum alloy plates was investigated. For this purpose, some of the samples welded using FSW technique with a rotational speed of 1250 rpm and a traverse speed of 40 mm·min-1 were subjected to annealing and some to artificial aging heat treatment at different temperatures and times. In FSWed artificial aged samples where AlFeSi precipitate formations were detected, hardness and strength increase were realized with grain-boundary strengthening and Orowan hardening mechanisms. The lowest ultimate tensile strength was 156.3 N·mm-2 in the annealed sample, while the highest ultimate tensile strength was 210.8 N·mm-2 in the sample artificially aged at 190 °C for 2 hours. Fractographic examination revealed that ductile fracture occurred in all specimens.

References

  • 1. Ayvaz, S. I., D. Arslan, and M. Ayvaz, Investigation of mechanical and tribological behaviour of SiC and B4C reinforced Al-Zn-Mg-Si-Cu alloy matrix surface composites fabricated via friction stir processing. Materials Today Communications, 2022. 31(103419). https://doi.org/10.1016/j.mtcomm.2022.103419.
  • 2. Ayvaz, M., Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu). International Advanced Researches and Engineering Journal, 2021. 05(02): p. 181-187. https://doi.org/10.35860/iarej.839108.
  • 3. Cetinel, H. and M. Ayvaz, The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082. Materials Testing, 2014. 56(11-12): p. 988-993.
  • 4. Ma, Z. Y., S.R. Sharma, and R.S. Mishra, Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metallurgical and Materials Transactions A, 2006. 37(11): p. 3323-3336.
  • 5. Georgantzia, E., M. Gkantou, and G.S. Kamaris, (2021) Aluminium alloys as structural material: A review of research. Engineering Structures, 2021. 227: 111372.
  • 6. Bolat, Ç., B. Ergene, U. Karakılıç, and a. Gökşenli, Investigating on the machinability assessment of precision machining pumice reinforced AA7075 syntactic foam. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021. 236(5): p. 1-15. https://doi.org/10.1177/09544062211027613.
  • 7. WANHILL, R.J.H., Aerospace applications of aluminum–lithium alloys. In: Aluminum-lithium Alloys. Butterworth-Heinemann, 2014. p. 503-535.
  • 8. Cheng, Y., Y. Hu, J. Xu, L. Yu, T. Huang, and H. Zhang, Studies on microstructure and properties of TiB2-Al3Ti ceramic particles reinforced spray-formed 7055 aluminum alloy fusion welded joints. Journal of Materials Research and Technology, 2022. 19(13): p. 1298-1311. https://doi.org/10.1016/j.jmrt.2022.05.116.
  • 9. Murali, N., Y. Chi, and X. Li, Natural aging of dissimilar high-strength AA2024/AA7075 joints arc welded with nano-treated filler. Materials Letters, 2022. 322: 132479. https://doi.org/10.1016/j.matlet.2022.132479.
  • 10. Hu, Z., S. Yuan, X. Wang, G. Liu, and Y. Huang, Effect of post-weld heat treatment on the microstructure and plastic deformation behavior of friction stir welded 2024. Materials and Design, 2011. 32(10): p. 5055-5060. https://doi.org/10.1016/j.matdes.2011.05.035.
  • 11. Lin, S., J. Tang, S. Liu, Y. Deng, H. Lin, H. Ji, L. Ye, and X. Zhang, Effect of travel speed on microstructure and mechanical properties of fsw joints for Al–Zn–Mg alloy. Materials, 2019. 12: 4178. https://doi.org/10.3390/ma12244178.
  • 12. Aydin, H., A. Bayram, and I. Durgun, The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints, Materials and Design, 2010. 31: p. 2568–2577. https://doi.org/10.1016/j.matdes.2009.11.030.
  • 13. Yeni, C., S. Sayer, O. Ertugrul, and M. Pakdil, Effect of post-weld aging on the mechanical and microstructural properties of friction stir welded aluminum alloy 7075. Archives of Materials Science and Engineering, 2008. 34(2): p. 105-109.
  • 14. Cabibbo, M., A. Forcellese, E. Santecchia, C. Paoletti, S. Spigarelli, and M. Simoncini, New Approaches to Friction Stir Welding of Aluminum Light-Alloys. Metals, 2020. 10(2): 233. https://doi.org/10.3390/met10020233.
  • 15. Su, J., T.W. Nelson, and C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering A, 2005. 405(1-2): p. 277-286. https://doi.org/10.1016/j.msea.2005.06.009.
  • 16. Awang Draup, A.J., B. Rodgers, P.B. Prangnell, Q.M. Li, M.J. Lunt, and J.D. Robson, Modelling of friction stir welded AA2139 aluminium alloy panels in tension and blast. International Journal of Impact Engineering, 2022. 163: p. 104163. https://doi.org/10.1016/j.ijimpeng.2022.104163.
  • 17. Rhodes, C.G., M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Materialia, 1997. 36(1): p. 69–75.
  • 18. Su, J., T.W. Nelson, and C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering A, 2005. 405(1-2): p. 277-286. https://doi.org/10.1016/S1359-6454(02)00449-4.
  • 19. Chen, Y.C., J.C. Feng, and H.J. Liu, Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys. Materials Characterization, 2009. 60(6): p. 476–481. https://doi.org/10.1016/j.matchar.2008.12.002.
  • 20. Rajendran, C., K. Srinivasan, V. Balasubramanian, H. Balaji, and P. Selvaraj, Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy. Journal of the Mechanical Behavior of Materials, 2016. 25(3–4): p.89–98. https://doi.org/10.1515/jmbm-2016-0011.
  • 21. Yadav, V.K., V. Gaur, and I.V. Singh, Effect of post-weld heat treatment on mechanical properties and fatigue crack growth rate in welded AA-2024. Materials Science and Engineering: A, 2020. 779: 139116. https://doi.org/10.1016/j.msea.2020.139116.
  • 22. Elangovan, K. and V. Balasubramanian, Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Materials Charactarization, 2008. 59: p. 1168–1177. https://doi.org/10.1016/j.matchar.2007.09.006.
  • 23. Ipekoglu, G., S. Erim, and G. Cam, Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-Alloy plates with different temper conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014. 45(2): p. 864–877. https://doi.org/10.1007/s11661-013-2026-y.
  • 24. Sharma, C., D.K. Dwivedi, and P. Kumar, Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039. Materials and Design, 2013. 43: p. 134–143. https://doi.org/10.1016/j.matdes.2012.06.018.
  • 25. Al-Allaq, A.H., M. Ojha, Y.S. Mohammed, S.N. Bhukya, Z. Wu, and A.A. Elmustafa, (2023).Post‑weld heat treatment effects on microstructure, crystal structure, and mechanical properties of donor stir–assisted friction stir welding material of AA6061‑T6 alloy. The International Journal of Advanced Manufacturing Technology, 2023. 129: p. 1845-1854.
  • 26. Zhang, C., G. Huang, D. Zhang, Z. Sun, and Q. Liu, Microstructure and mechanical properties in dissimilar friction stir welded AA2024/7075 joints at high heat input: effect of post-weld heat treatment. Journal of Materials Research and Technology, 2020. 9(6): p. 14771-14782. https://doi.org/10.1016/j.jmrt.2020.10.053.
  • 27. Masoumi Khalilabad, M., Y. Zedan, D. Texier, M. Jahazi, and P. Bocher, Effect of heat treatments on microstructural and mechanical characteristics of dissimilar friction stir welded 2198/2024 aluminum alloys. Journal of Adhesion Science and Technology, 2021. 36(3): p. 221–239.
  • 28. Maji, P., R.K. Nath, R. Karmakar, P. Paul, R.K.B. Meitei, S.K. Ghosh, Effect of post processing heat treatment on friction stir welded/processed aluminum based alloys and composites. CIRP Journal of Manufacturing Science and Technology, 2021. 35: p. 96-105. https://doi.org/10.1016/j.cirpj.2021.05.014.
  • 29. Abu-Okail, M., I. Sabry, a. Abu-Okail and W.M. Shewakh, Effect of Changing Heat treatment conditions on microstructural and mechanical properties of friction stir welded sheets of AA2024 with Interlayer Strip Width AA7075. Journal of Failure Analysis and Prevention, 2020. 3: p. 701-722
  • 30. Feng, J.C., Y.C. Chen, and H. J. Liu, Effects of post-weld heat treatment on microstructure and mechanical properties of friction stir welded joints of 2219-O aluminium alloy. Materials Science and Technology, 2006. 22(1): p. 86–90. https://doi.org/10.1179/174328406X79298.
  • 31. Sree Sabari, S., V. Balasubramanian, S. Malarvizhi, and G. Madusudhan Reddy, Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints. Journal of the Mechanical Behavior of Materials, 2021. 24(5–6): p. 195–205. https://doi.org/10.1515/jmbm-2015-0021.
  • 32. Pabandi, H.K., H.R. Jasnani, and M. Paidar, Effect of precipitation hardening heat treatment on mechanical and microstructure features of dissimilar friction stir welded AA2024-T6 and AA6061-T6 alloys. Journal of Manufacturing Processes, 2018. 31: p. 214–220.
  • 33. Zhao, Y.H., S.B. Lin, L. Wu, and F. X. Qu, The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Materials Letters, 2005. 59(23): p. 2948–2952. https://doi.org/10.1016/j.matlet.2005.04.048.
  • 34. Chen, Y., H. Liu, and J. Feng, Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Materials Science and Engineering: A, 2006. 420(1–2): p. 21–25. https://doi.org/10.1016/j.msea.2006.01.029.
  • 35. Radisavljevic, I., A. Zivkovic, N. Radovic, and V. Grabulov, Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints. Transactions of Nonferrous Metals Society of China (English Edition), 2013. 23(12): p. 3525–3539. https://doi.org/10.1016/S1003-6326(13)62897-6.
  • 36. Kwon, Y.J., S.B. Shim, and D.H. Park, Friction stir welding of 5052 aluminum alloy plates. Transactions of Nonferrous Metals Society of China (English Edition), 2009. 19(1): p. 23-27. https://doi.org/10.1016/S1003-6326(10)60239-7.
  • 37. Kalemba, I., S. Dymek, C. Hamilton, and M. Blicharski, Microstructure evolution in friction stir welded aluminium alloys. Archives of Metallurgy and Materials, 2009. 54(1): p. 75-82.
  • 38. Krishnan, K.N., On the formation of onion rings in friction stir welds. Materials Science and Engineering: A, 2002. 327(2): p. 246-251.
  • 39. Wang, Z., L. Huang, J. Li, X. Li, H. Zhu, F. Ma, H. Ma, and Cui, J., Microstructure and properties of friction stir welded 2219 aluminum alloy under heat treatment and electromagnetic forming process. Metals, 2018. 8(5): p. 305-316. https://doi.org/10.3390/met8050305.
  • 40. Sutton, M.A., B. Yang, A.P. Reynolds, and R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum. Materials Science and Engineering: A, 2002. 323(1-2): p. 160-166.
  • 41. Aydin, H., Quality and properties of the friction stir welded AA2024-T4 aluminium alloy at different welding conditions. Materials Testing, 2010. 52(9): p. 640-650. https://doi.org/10.3139/120.110172.
  • 42. Sajadifar, S.V., G. Moeini, E. Scharifi, C. Lauhoff, S. Böhm, and T. Niendorf, On the Effect of Quenching on Postweld Heat Treatment of Friction-Stir-Welded Aluminum 7075 Alloy. Journal of Materials Engineering and Performance, 28(8): p. 5255-5265.
  • 43. Sato Y.S., Hç. Kokawa, M. Enomoto, S. Jogan. and T. Hashimoto, Precipitation Sequence in Friction Stir Weld of 6063 Aluminum during Aging. Metallurgical and Materials Transactions A, 1999. 30: p. 3125-3130.
  • 44. Aydin, H., O. Tuncel, C. Yuce, M. Tutar, N. Yavuz, and A. Bayram, Effect of rotational speed and dwell time on mechanical properties of dissimilar AA1050-AA3105 friction stir spot welded joints. Materials Testing, 2014. 56(10): p. 818-825. https://doi.org/10.3139/120.110636.
  • 45. Sedmak, A., M.M.M., Eramah, S. Tadić, S. Perković, and H. Dascau, Impact Toughness of Friction Stir Welded Al-Mg Alloy. Materials Testing, 2014. 56(10): p. 837-841. https://doi.org/10.3139/120.110638.
  • 46. Ojo, O.O., E. Taban, and E. Kaluc, Effect of residual Alclad on friction stir spot welds of AA2219 alloys. Materials Testing, 2018. 60: p. 979-988. https://doi.org/10.3139/120.111245.
  • 47. Sato, Y.S., M. Urata, H. Kokawa, and K. Ikeda, Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Materials Science and Engineering: A, 2003. 354(1–2): p. 298–305. https://doi.org/10.1016/S0921-5093(03)00008-X.
  • 48. Saldaña-Garcés, R., D. Hernández-García, F. García-Vázquez, E.J. Gutiérrez-Castañeda, D. Verdera, and R. Deaquino-Lara, Friction stir welding of dissimilar AA6061-T6 to AZ31B-H24 alloys. Soldagem & Inspeçẵo, 2020. 25: p. 1–14. https://doi.org/10.1590/0104-9224/SI25.25.
  • 49. Tao, X., Chang, Y., Guo, Y., Li, W., and Li, M., Microstructure and mechanical properties of friction stir welded oxide dispersion strengthened AA6063 aluminum matrix composites enhanced by post-weld heat treatment. Materials Science and Engineering: A, 2018. 725: p. 19–27. https://doi.org/10.1016/j.msea.2018.03.094.
  • 50. Saravanan, V., Rajakumar, S., and Muruganandam, A., Effect of friction stir welding process parameters on microstructure and mechanical properties of dissimilar AA6061-T6 and AA7075-T6 aluminum alloy joints. metallography, Microstructure, and Analysis, 2016. 5(6): p. 476–485. https://doi.org/10.1007/s13632-016-0315-8.
  • 51. Sivaraj, P., D. Kanagarajan, and V. Balasubramanian, Effect of post-weld heat treatment on mechanical properties and fatigue crack growth behaviour of friction stir welded 7075-T651 Al alloy. Transactions of Nonferrous Metals Society of China, 2014. 24(8): p. 2459-2467.
  • 52. Bayazid, S.M., H. Farhangi, H. Asgharzadeh, L. Radan, A. Ghahramani, and A. Mirhaji, Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy. Materials Science and Engineering: A, 2016. 649: p. 293-300.
  • 53. Kumar, P.V., G.M., Redd, and K.S. Rao, Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds e Effect of post weld heat treatment. Defence Technology, 2015. 11(2): p. 166-173.
  • 54. İpekoğlu, G. and G. Çam, Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and aAA6061 aluminum alloys. Metallurgical and Materials Transactions A, 2014. 45(7): p.3074-3087.
  • 55. Lakshminarayanan, A. K., V. Balasubramanian, and K. Elangovan, Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. International Journal of Advanced Manufacturing Technology, 2009. 40(3–4): p. 286–296. https://doi.org/10.1007/s00170-007-1325-0.
Year 2024, Volume: 8 Issue: 2, 76 - 83
https://doi.org/10.35860/iarej.1484578

Abstract

References

  • 1. Ayvaz, S. I., D. Arslan, and M. Ayvaz, Investigation of mechanical and tribological behaviour of SiC and B4C reinforced Al-Zn-Mg-Si-Cu alloy matrix surface composites fabricated via friction stir processing. Materials Today Communications, 2022. 31(103419). https://doi.org/10.1016/j.mtcomm.2022.103419.
  • 2. Ayvaz, M., Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu). International Advanced Researches and Engineering Journal, 2021. 05(02): p. 181-187. https://doi.org/10.35860/iarej.839108.
  • 3. Cetinel, H. and M. Ayvaz, The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082. Materials Testing, 2014. 56(11-12): p. 988-993.
  • 4. Ma, Z. Y., S.R. Sharma, and R.S. Mishra, Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metallurgical and Materials Transactions A, 2006. 37(11): p. 3323-3336.
  • 5. Georgantzia, E., M. Gkantou, and G.S. Kamaris, (2021) Aluminium alloys as structural material: A review of research. Engineering Structures, 2021. 227: 111372.
  • 6. Bolat, Ç., B. Ergene, U. Karakılıç, and a. Gökşenli, Investigating on the machinability assessment of precision machining pumice reinforced AA7075 syntactic foam. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021. 236(5): p. 1-15. https://doi.org/10.1177/09544062211027613.
  • 7. WANHILL, R.J.H., Aerospace applications of aluminum–lithium alloys. In: Aluminum-lithium Alloys. Butterworth-Heinemann, 2014. p. 503-535.
  • 8. Cheng, Y., Y. Hu, J. Xu, L. Yu, T. Huang, and H. Zhang, Studies on microstructure and properties of TiB2-Al3Ti ceramic particles reinforced spray-formed 7055 aluminum alloy fusion welded joints. Journal of Materials Research and Technology, 2022. 19(13): p. 1298-1311. https://doi.org/10.1016/j.jmrt.2022.05.116.
  • 9. Murali, N., Y. Chi, and X. Li, Natural aging of dissimilar high-strength AA2024/AA7075 joints arc welded with nano-treated filler. Materials Letters, 2022. 322: 132479. https://doi.org/10.1016/j.matlet.2022.132479.
  • 10. Hu, Z., S. Yuan, X. Wang, G. Liu, and Y. Huang, Effect of post-weld heat treatment on the microstructure and plastic deformation behavior of friction stir welded 2024. Materials and Design, 2011. 32(10): p. 5055-5060. https://doi.org/10.1016/j.matdes.2011.05.035.
  • 11. Lin, S., J. Tang, S. Liu, Y. Deng, H. Lin, H. Ji, L. Ye, and X. Zhang, Effect of travel speed on microstructure and mechanical properties of fsw joints for Al–Zn–Mg alloy. Materials, 2019. 12: 4178. https://doi.org/10.3390/ma12244178.
  • 12. Aydin, H., A. Bayram, and I. Durgun, The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints, Materials and Design, 2010. 31: p. 2568–2577. https://doi.org/10.1016/j.matdes.2009.11.030.
  • 13. Yeni, C., S. Sayer, O. Ertugrul, and M. Pakdil, Effect of post-weld aging on the mechanical and microstructural properties of friction stir welded aluminum alloy 7075. Archives of Materials Science and Engineering, 2008. 34(2): p. 105-109.
  • 14. Cabibbo, M., A. Forcellese, E. Santecchia, C. Paoletti, S. Spigarelli, and M. Simoncini, New Approaches to Friction Stir Welding of Aluminum Light-Alloys. Metals, 2020. 10(2): 233. https://doi.org/10.3390/met10020233.
  • 15. Su, J., T.W. Nelson, and C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering A, 2005. 405(1-2): p. 277-286. https://doi.org/10.1016/j.msea.2005.06.009.
  • 16. Awang Draup, A.J., B. Rodgers, P.B. Prangnell, Q.M. Li, M.J. Lunt, and J.D. Robson, Modelling of friction stir welded AA2139 aluminium alloy panels in tension and blast. International Journal of Impact Engineering, 2022. 163: p. 104163. https://doi.org/10.1016/j.ijimpeng.2022.104163.
  • 17. Rhodes, C.G., M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Materialia, 1997. 36(1): p. 69–75.
  • 18. Su, J., T.W. Nelson, and C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering A, 2005. 405(1-2): p. 277-286. https://doi.org/10.1016/S1359-6454(02)00449-4.
  • 19. Chen, Y.C., J.C. Feng, and H.J. Liu, Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys. Materials Characterization, 2009. 60(6): p. 476–481. https://doi.org/10.1016/j.matchar.2008.12.002.
  • 20. Rajendran, C., K. Srinivasan, V. Balasubramanian, H. Balaji, and P. Selvaraj, Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy. Journal of the Mechanical Behavior of Materials, 2016. 25(3–4): p.89–98. https://doi.org/10.1515/jmbm-2016-0011.
  • 21. Yadav, V.K., V. Gaur, and I.V. Singh, Effect of post-weld heat treatment on mechanical properties and fatigue crack growth rate in welded AA-2024. Materials Science and Engineering: A, 2020. 779: 139116. https://doi.org/10.1016/j.msea.2020.139116.
  • 22. Elangovan, K. and V. Balasubramanian, Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Materials Charactarization, 2008. 59: p. 1168–1177. https://doi.org/10.1016/j.matchar.2007.09.006.
  • 23. Ipekoglu, G., S. Erim, and G. Cam, Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-Alloy plates with different temper conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014. 45(2): p. 864–877. https://doi.org/10.1007/s11661-013-2026-y.
  • 24. Sharma, C., D.K. Dwivedi, and P. Kumar, Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039. Materials and Design, 2013. 43: p. 134–143. https://doi.org/10.1016/j.matdes.2012.06.018.
  • 25. Al-Allaq, A.H., M. Ojha, Y.S. Mohammed, S.N. Bhukya, Z. Wu, and A.A. Elmustafa, (2023).Post‑weld heat treatment effects on microstructure, crystal structure, and mechanical properties of donor stir–assisted friction stir welding material of AA6061‑T6 alloy. The International Journal of Advanced Manufacturing Technology, 2023. 129: p. 1845-1854.
  • 26. Zhang, C., G. Huang, D. Zhang, Z. Sun, and Q. Liu, Microstructure and mechanical properties in dissimilar friction stir welded AA2024/7075 joints at high heat input: effect of post-weld heat treatment. Journal of Materials Research and Technology, 2020. 9(6): p. 14771-14782. https://doi.org/10.1016/j.jmrt.2020.10.053.
  • 27. Masoumi Khalilabad, M., Y. Zedan, D. Texier, M. Jahazi, and P. Bocher, Effect of heat treatments on microstructural and mechanical characteristics of dissimilar friction stir welded 2198/2024 aluminum alloys. Journal of Adhesion Science and Technology, 2021. 36(3): p. 221–239.
  • 28. Maji, P., R.K. Nath, R. Karmakar, P. Paul, R.K.B. Meitei, S.K. Ghosh, Effect of post processing heat treatment on friction stir welded/processed aluminum based alloys and composites. CIRP Journal of Manufacturing Science and Technology, 2021. 35: p. 96-105. https://doi.org/10.1016/j.cirpj.2021.05.014.
  • 29. Abu-Okail, M., I. Sabry, a. Abu-Okail and W.M. Shewakh, Effect of Changing Heat treatment conditions on microstructural and mechanical properties of friction stir welded sheets of AA2024 with Interlayer Strip Width AA7075. Journal of Failure Analysis and Prevention, 2020. 3: p. 701-722
  • 30. Feng, J.C., Y.C. Chen, and H. J. Liu, Effects of post-weld heat treatment on microstructure and mechanical properties of friction stir welded joints of 2219-O aluminium alloy. Materials Science and Technology, 2006. 22(1): p. 86–90. https://doi.org/10.1179/174328406X79298.
  • 31. Sree Sabari, S., V. Balasubramanian, S. Malarvizhi, and G. Madusudhan Reddy, Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints. Journal of the Mechanical Behavior of Materials, 2021. 24(5–6): p. 195–205. https://doi.org/10.1515/jmbm-2015-0021.
  • 32. Pabandi, H.K., H.R. Jasnani, and M. Paidar, Effect of precipitation hardening heat treatment on mechanical and microstructure features of dissimilar friction stir welded AA2024-T6 and AA6061-T6 alloys. Journal of Manufacturing Processes, 2018. 31: p. 214–220.
  • 33. Zhao, Y.H., S.B. Lin, L. Wu, and F. X. Qu, The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Materials Letters, 2005. 59(23): p. 2948–2952. https://doi.org/10.1016/j.matlet.2005.04.048.
  • 34. Chen, Y., H. Liu, and J. Feng, Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Materials Science and Engineering: A, 2006. 420(1–2): p. 21–25. https://doi.org/10.1016/j.msea.2006.01.029.
  • 35. Radisavljevic, I., A. Zivkovic, N. Radovic, and V. Grabulov, Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints. Transactions of Nonferrous Metals Society of China (English Edition), 2013. 23(12): p. 3525–3539. https://doi.org/10.1016/S1003-6326(13)62897-6.
  • 36. Kwon, Y.J., S.B. Shim, and D.H. Park, Friction stir welding of 5052 aluminum alloy plates. Transactions of Nonferrous Metals Society of China (English Edition), 2009. 19(1): p. 23-27. https://doi.org/10.1016/S1003-6326(10)60239-7.
  • 37. Kalemba, I., S. Dymek, C. Hamilton, and M. Blicharski, Microstructure evolution in friction stir welded aluminium alloys. Archives of Metallurgy and Materials, 2009. 54(1): p. 75-82.
  • 38. Krishnan, K.N., On the formation of onion rings in friction stir welds. Materials Science and Engineering: A, 2002. 327(2): p. 246-251.
  • 39. Wang, Z., L. Huang, J. Li, X. Li, H. Zhu, F. Ma, H. Ma, and Cui, J., Microstructure and properties of friction stir welded 2219 aluminum alloy under heat treatment and electromagnetic forming process. Metals, 2018. 8(5): p. 305-316. https://doi.org/10.3390/met8050305.
  • 40. Sutton, M.A., B. Yang, A.P. Reynolds, and R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum. Materials Science and Engineering: A, 2002. 323(1-2): p. 160-166.
  • 41. Aydin, H., Quality and properties of the friction stir welded AA2024-T4 aluminium alloy at different welding conditions. Materials Testing, 2010. 52(9): p. 640-650. https://doi.org/10.3139/120.110172.
  • 42. Sajadifar, S.V., G. Moeini, E. Scharifi, C. Lauhoff, S. Böhm, and T. Niendorf, On the Effect of Quenching on Postweld Heat Treatment of Friction-Stir-Welded Aluminum 7075 Alloy. Journal of Materials Engineering and Performance, 28(8): p. 5255-5265.
  • 43. Sato Y.S., Hç. Kokawa, M. Enomoto, S. Jogan. and T. Hashimoto, Precipitation Sequence in Friction Stir Weld of 6063 Aluminum during Aging. Metallurgical and Materials Transactions A, 1999. 30: p. 3125-3130.
  • 44. Aydin, H., O. Tuncel, C. Yuce, M. Tutar, N. Yavuz, and A. Bayram, Effect of rotational speed and dwell time on mechanical properties of dissimilar AA1050-AA3105 friction stir spot welded joints. Materials Testing, 2014. 56(10): p. 818-825. https://doi.org/10.3139/120.110636.
  • 45. Sedmak, A., M.M.M., Eramah, S. Tadić, S. Perković, and H. Dascau, Impact Toughness of Friction Stir Welded Al-Mg Alloy. Materials Testing, 2014. 56(10): p. 837-841. https://doi.org/10.3139/120.110638.
  • 46. Ojo, O.O., E. Taban, and E. Kaluc, Effect of residual Alclad on friction stir spot welds of AA2219 alloys. Materials Testing, 2018. 60: p. 979-988. https://doi.org/10.3139/120.111245.
  • 47. Sato, Y.S., M. Urata, H. Kokawa, and K. Ikeda, Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Materials Science and Engineering: A, 2003. 354(1–2): p. 298–305. https://doi.org/10.1016/S0921-5093(03)00008-X.
  • 48. Saldaña-Garcés, R., D. Hernández-García, F. García-Vázquez, E.J. Gutiérrez-Castañeda, D. Verdera, and R. Deaquino-Lara, Friction stir welding of dissimilar AA6061-T6 to AZ31B-H24 alloys. Soldagem & Inspeçẵo, 2020. 25: p. 1–14. https://doi.org/10.1590/0104-9224/SI25.25.
  • 49. Tao, X., Chang, Y., Guo, Y., Li, W., and Li, M., Microstructure and mechanical properties of friction stir welded oxide dispersion strengthened AA6063 aluminum matrix composites enhanced by post-weld heat treatment. Materials Science and Engineering: A, 2018. 725: p. 19–27. https://doi.org/10.1016/j.msea.2018.03.094.
  • 50. Saravanan, V., Rajakumar, S., and Muruganandam, A., Effect of friction stir welding process parameters on microstructure and mechanical properties of dissimilar AA6061-T6 and AA7075-T6 aluminum alloy joints. metallography, Microstructure, and Analysis, 2016. 5(6): p. 476–485. https://doi.org/10.1007/s13632-016-0315-8.
  • 51. Sivaraj, P., D. Kanagarajan, and V. Balasubramanian, Effect of post-weld heat treatment on mechanical properties and fatigue crack growth behaviour of friction stir welded 7075-T651 Al alloy. Transactions of Nonferrous Metals Society of China, 2014. 24(8): p. 2459-2467.
  • 52. Bayazid, S.M., H. Farhangi, H. Asgharzadeh, L. Radan, A. Ghahramani, and A. Mirhaji, Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy. Materials Science and Engineering: A, 2016. 649: p. 293-300.
  • 53. Kumar, P.V., G.M., Redd, and K.S. Rao, Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds e Effect of post weld heat treatment. Defence Technology, 2015. 11(2): p. 166-173.
  • 54. İpekoğlu, G. and G. Çam, Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and aAA6061 aluminum alloys. Metallurgical and Materials Transactions A, 2014. 45(7): p.3074-3087.
  • 55. Lakshminarayanan, A. K., V. Balasubramanian, and K. Elangovan, Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. International Journal of Advanced Manufacturing Technology, 2009. 40(3–4): p. 286–296. https://doi.org/10.1007/s00170-007-1325-0.
There are 55 citations in total.

Details

Primary Language English
Subjects Tribology, Composite and Hybrid Materials
Journal Section Research Articles
Authors

Dilek Arslan 0000-0003-0198-0787

Safiye İpek Ayvaz 0000-0001-7385-7388

Early Pub Date August 20, 2024
Publication Date
Submission Date May 15, 2024
Acceptance Date August 7, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Arslan, D., & Ayvaz, S. İ. (2024). Influences of post-weld artificial aging on microstructural and tensile properties of friction stir-welded Al-Zn-Mg-Si-Cu aluminum alloy joints. International Advanced Researches and Engineering Journal, 8(2), 76-83. https://doi.org/10.35860/iarej.1484578
AMA Arslan D, Ayvaz Sİ. Influences of post-weld artificial aging on microstructural and tensile properties of friction stir-welded Al-Zn-Mg-Si-Cu aluminum alloy joints. Int. Adv. Res. Eng. J. August 2024;8(2):76-83. doi:10.35860/iarej.1484578
Chicago Arslan, Dilek, and Safiye İpek Ayvaz. “Influences of Post-Weld Artificial Aging on Microstructural and Tensile Properties of Friction Stir-Welded Al-Zn-Mg-Si-Cu Aluminum Alloy Joints”. International Advanced Researches and Engineering Journal 8, no. 2 (August 2024): 76-83. https://doi.org/10.35860/iarej.1484578.
EndNote Arslan D, Ayvaz Sİ (August 1, 2024) Influences of post-weld artificial aging on microstructural and tensile properties of friction stir-welded Al-Zn-Mg-Si-Cu aluminum alloy joints. International Advanced Researches and Engineering Journal 8 2 76–83.
IEEE D. Arslan and S. İ. Ayvaz, “Influences of post-weld artificial aging on microstructural and tensile properties of friction stir-welded Al-Zn-Mg-Si-Cu aluminum alloy joints”, Int. Adv. Res. Eng. J., vol. 8, no. 2, pp. 76–83, 2024, doi: 10.35860/iarej.1484578.
ISNAD Arslan, Dilek - Ayvaz, Safiye İpek. “Influences of Post-Weld Artificial Aging on Microstructural and Tensile Properties of Friction Stir-Welded Al-Zn-Mg-Si-Cu Aluminum Alloy Joints”. International Advanced Researches and Engineering Journal 8/2 (August 2024), 76-83. https://doi.org/10.35860/iarej.1484578.
JAMA Arslan D, Ayvaz Sİ. Influences of post-weld artificial aging on microstructural and tensile properties of friction stir-welded Al-Zn-Mg-Si-Cu aluminum alloy joints. Int. Adv. Res. Eng. J. 2024;8:76–83.
MLA Arslan, Dilek and Safiye İpek Ayvaz. “Influences of Post-Weld Artificial Aging on Microstructural and Tensile Properties of Friction Stir-Welded Al-Zn-Mg-Si-Cu Aluminum Alloy Joints”. International Advanced Researches and Engineering Journal, vol. 8, no. 2, 2024, pp. 76-83, doi:10.35860/iarej.1484578.
Vancouver Arslan D, Ayvaz Sİ. Influences of post-weld artificial aging on microstructural and tensile properties of friction stir-welded Al-Zn-Mg-Si-Cu aluminum alloy joints. Int. Adv. Res. Eng. J. 2024;8(2):76-83.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.