Review
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 1, 50 - 69, 23.04.2025
https://doi.org/10.35860/iarej.1582470

Abstract

References

  • 1. Ravi, R.R. and D.S. Srinivasu, A comprehensive parametric study on abrasive waterjet trepanning of Al-6061 alloy. Materials and Manufacturing Processes, 2023, 38(12): p. 1472-1494.
  • 2. Cano-Salinas, L., X. Sourd, K. Moussaoui, S. Le Roux, M. Salem, A. Hor and R. Zitoune, Effect of process parameters of Plain Water Jet on the cleaning quality, surface and material integrity of Inconel 718 milled by Abrasive Water Jet. Tribology International, 2023, 178, 108094.
  • 3. Płodzień, M., Ł. Żyłka, K. Żak and S. Wojciechowski, Modelling the Kerf Angle, Roughness and Waviness of the Surface of Inconel 718 in an Abrasive Water Jet Cutting Process. Materials, 2023, 16(15): 5288.
  • 4. Sourd, X., R. Zitoune, A. Hejjaji, M. Salem, A. Hor and D. Lamouche, Plain water jet cleaning of titanium alloy after abrasive water jet milling: Surface contamination and quality analysis in the context of maintenance. Wear, 2021, 477, 203833.
  • 5. Holmberg, J., A. Wretland and J. Berglund, Abrasive Water Jet Milling as an Efficient Manufacturing Method for Superalloy Gas Turbine Components. Journal of Manufacturing and Materials Processing, 2022, 6(124).
  • 6. Armağan, M. and A.A. Arıcı, Determination and prediction of surface and kerf properties in abrasive water jet machining of Fe-Cr-C based hardfacing wear plates. Journal of Manufacturing Processes, 2024, 117, p. 329-345.
  • 7. Doğankaya, E., M. Kahya and H.Ö. Ünver, Abrasive water jet machining of UHMWPE and trade-off optimization. Materials and Manufacturing Processes, 2020, 35(12): p. 1339-1351.
  • 8. Ganesan, D., S. Salunkhe, D. Panghal, A.P. Murali, S. Mahalingam, H. Tarigonda, S.R. Gawade and H.M.A.M. Hussein, Optimization of Abrasive Water Jet Machining Process Parameters on Onyx Composite Followed by Additive Manufacturing. Processes, 2023, 11, 2263.
  • 9. Müller, M., V. Kolář, J. Šulc, R.K. Mishra, M. Hromasová and B.K. Behera, Effect of waterjet machining parameters on the cut quality of PP and PVC-U materials coated with polyurethane and acrylate coatings. Materials, 2021, 14(24): 7542.
  • 10. Ruiz-Garcia, R., P.F. Mayuet Ares, J.M. Vazquez-Martinez and J. Salguero Gómez, Influence of Abrasive Waterjet Parameters on the Cutting and Drilling of CFRP/UNS A97075 and UNS A97075/CFRP Stacks. Materials, 2021, 12(1): 107.
  • 11. Murthy, B.R.N., E. Makki, S.R. Potti, A. Hiremath, G. Bolar, J. Giri and T. Sathish, Optimization of Process Parameters to Minimize the Surface Roughness of Abrasive Water Jet Machined Jute/Epoxy Composites for Different Fiber Inclinations. Journal of Composite Science, 2023, 7, 498.
  • 12. Gubencu, D.V., C. Opris and A.A. Han, Analysis of Kerf Quality Characteristics of Kevlar Fiber-Reinforced Polymers Cut by Abrasive Water Jet. Materials, 2023, 16(2182).
  • 13. Gopichand, G. and M. Sreenivasarao, Multi-response parametric optimisation of abrasive waterjet milling of Hastelloy C-276. SN Applied Sciences, 2020, 2(1764).
  • 14. Qian, Y., L. Wan, X. Wang, G. Zhang, X. Wang and D. Li, The cylindrical surface characteristics of AA7075 aluminum alloy machined by abrasive waterjet with circular cuts. Journal of Materials Research and Technology, 2023, 26, p. 4975-4988.
  • 15. Shi, H., K. Giasin, A. Barouni and Z. Zhang, An experimental assessment and optimisation of hole quality in Al2024-T3 aluminium alloy during abrasive water jet machining. The International Journal of Advanced Manufacturing Technology, 2024, 130, p. 5199–5218.
  • 16. Pal, V.K. and A.K. Sharma, Complex shaped micro-channels generation using tools fabricated by AWJ milling process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236(1): p. 194-201.
  • 17. Karkalos, N.E. and P. Karmiris-Obratański, A comprehensive study on the challenges of using pure water jet as post-treatment of abrasive water jet milled pockets in titanium alloy. Applied Sciences, 2024, 14(1741).
  • 18. Li, X., X. Ruan, J. Zou, X. Long and Z. Chen, Experiment on carbon fiber–reinforced plastic cutting by abrasive waterjet with specific emphasis on surface morphology. The International Journal of Advanced Manufacturing Technology, 2020, 107, p. 145–156.
  • 19. Bañon, F., A. Sambruno, P.F. Mayuet and Á. Gómez-Parra, Study of Abrasive Water Jet Machining as a Texturing Operation for Thin Aluminium Alloy UNS A92024. Materials, 2023, 16(3843).
  • 20. Hashish, M. An Investigation of Milling With Abrasive-Waterjets. Journal of Engineering for Industry, 1989, 111(2): p. 158-166.
  • 21. Wan, L., J. Liu, Y. Qian, X. Wang, S. Wu, H. Du and D. Li, Analytical modeling and multi-objective optimization algorithm for abrasive waterjet milling Ti6Al4V. The International Journal of Advanced Manufacturing Technology, 2023, 123, p. 4367-4384.
  • 22. Chen, J., Y. Yuan, H. Gao and T. Zhou, Analytical modeling of effective depth of cut for ductile materials via abrasive waterjet machining. The International Journal of Advanced Manufacturing Technology, 2023, 124 p.1813-1826.
  • 23. Wan, L., J. Liu, Y. Qian, X. Wang, S. Wu, H. Du and D. Li, Analytical modeling and multi-objective optimization algorithm for abrasive waterjet milling Ti6Al4V. The International Journal of Advanced Manufacturing Technology, 2022, 123, p. 4367-4384.
  • 24. Dekster, L., N.E. Karkalos, P. Karmiris-Obratáński and A.P. Markopoulos, Evaluation of the Machinability of Ti-6Al-4V Titanium Alloy by AWJM Using a Multipass Strategy. Applied Sciences, 2023, 13, 3774.
  • 25. Ramesh, P. and K. Mani, Prediction of surface roughness using machine learning approach for abrasive waterjet milling of alumina ceramic. The International Journal of Advanced Manufacturing Technology, 2021, 119, p. 503-516.
  • 26. Bui, V.H., P. Gilles, T. Sultan, G. Cohen and W. Rubio, Adaptive speed control for waterjet milling in pocket corners. The International Journal of Advanced Manufacturing Technology, 2019, 103, p. 77-89.
  • 27. Gowthama, K., H.M. Somasheker, B. Suresha, P.B. Singh, N. Rajini, F. Mohammad, H.A., Al-Lohedan and A.A. Soleiman, Characterization and optimization of abrasive water jet machining parameters of aluminium/silicon carbide composites. Materials Research Express, 2023, 10, 115505.
  • 28. Ozcan, Y., L.T. Tunc, J. Kopacka, B. Cetin, M. Sulitka, Modelling and simulation of controlled depth abrasive water jet machining (AWJM) for roughing passes of free-form surfaces. The International Journal of Advanced Manufacturing Technology, 2021, 114, p. 3581–3596.
  • 29. Shukla, M. Abrasive Water Jet Milling. In J.P. Davim (Ed.): Nontraditional Machining Processes, 2013, (pp. 177-203). Springer-Verlag London.
  • 30. Arun, A., K. Rajkumar, S. Sasidharan and C. Balasubramaniyan, Process parameters optimization in machining of monel 400 alloy using abrasive water jet machining. Materials Today: Proceedings, 2024, 98, p. 28-32.
  • 31. Rammohan, S., S.T. Kumaran, M. Uthayakumar and A. Velayutham, Numerical Modeling of Kerf Generation in Abrasive Waterjet Machining of Military Grade Armor Steel. Human Factors and Mechanical Engineering for Defense and Safety, 2023, 7(1).
  • 32. Uhlmann, E., C. Männel and T. Braun, Efficient abrasive water jet milling for near-net-shape fabrication of difficult-to-cut materials. The International Journal of Advanced Manufacturing Technology, 2020, 111, p. 685-693.
  • 33. Gowthama, K., H.M. Somasheker, B. Suresha, P.B. Singh, N. Rajini, F. Mohammad, H. Al-Lohedan and A.A. Soleiman, Characterization and optimization of abrasive water jet machining parameters of aluminium/silicon carbide composites. Materials Research Express, 2023, 10, 115505.
  • 34. Duspara, M., V. Starčević, I. Samardžić and M. Horvat, Optimization of abrasive waterjet machining process parameters. Tehnički Glasnik, 2017, 11(4): p. 143-149.
  • 35. Kesharwani, G.S. Controlled Depth Milling of Ti-6Al-4V Alloy using Non-spherical (Triangular & Trapezoidal) Sharp edge shape ceramics abrasive particle in Abrasive Water Jet Machining. International Journal of Scientific and Engineering Research, 2015, 6(5): p. 183-188.
  • 36. Hocheng, H., H.Y. Tsai, J.J. Shiue and B. Wang, Feasibility Study of Abrasive-Waterjet Milling of Fiber-Reinforced Plastics. Journal of Manufacturing Science and Engineering, 1997, 119(2): p. 133-142.
  • 37. Ramkumar, J. and G. Gupta, Hybrid Abrasive Water Jet and Milling Process. In Micromanufacturing Lab, 2020, I.I.T. Kanpur.
  • 38. Patel, J.K. and A.A. Shaikh, The influence of abrasive water jet machining parameters on various responses—A review. International Journal of Mechanical Engineering and Robotics Research, 2015, 4(1): p. 383-403.
  • 39. Escobar-Palafox, G.A., R.S. Gault and K. Ridgway, Characterisation of abrasive water-jet process for pocket milling in Inconel 718. Procedia CIRP, 2012, 1, p. 404-408.
  • 40. Hashish, M. AWJ milling of gamma titanium aluminide. Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference, 2009.
  • 41. Hutyrová, Z., J. Ščučka, S. Hloch, P. Hlaváček and M. Zeleňák, Turning of wood plastic composites by water jet and abrasive water jet. The International Journal of Advanced Manufacturing Technology, 2015, 84, p. 1615–1623.
  • 42. Ting, H.Y., M. Asmelash, A. Azhari, T. Alemu and K. Saptaji, Prediction of surface roughness of titanium alloy in abrasive waterjet machining process. International Journal on Interactive Design and Manufacturing (IJIDeM): 2022, 16, p. 281-289.
  • 43. Goutham, U., B.S. Hasu, G. Chakraverti and M. Kanthababu, Experimental Investigation of Pocket Milling on Inconel 825 using Abrasive Water Jet Machining. International Journal of Current Engineering and Technology, 2016, 6(1): p. 295-302.
  • 44. Hussien, A.A., I. Qasem, P.S. Kataraki, W. Al-Kouz and A.A. Janvekar, Studying the Performance of Cutting Carbon Fibre-Reinforced Plastic Using an Abrasive Water Jet Technique. Strojniški vestnik - Journal of Mechanical Engineering, 2021, 67(4): p. 135-141.
  • 45. Murthy, B.R.N., R.P.K.J. Beedu and S.R. Potti, Study on Machining Quality in Abrasive Water Jet Machining of Jute-Polymer Composite and Optimization of Process Parameters through Grey Relational Analysis. Journal of Composite Science, 2024, 8(1): 20.
  • 46. Fowler, G., P.H. Shipway and I.R. Pashby, A technical note on grit embedment following abrasive water-jet milling of a titanium alloy. Journal of Materials Processing Technology, 2005, 159(3): p. 356-368.
  • 47. Yuan, Y., J. Chen, H. Gao and X. Wang, An investigation into the abrasive waterjet milling circular pocket on titanium alloy. The International Journal of Advanced Manufacturing Technology, 2020, 107, p. 4503-4515.
  • 48. Fowler, G., I.R. Pashby and P.H. Shipway, The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear, 2009, 266(6-7): p. 613-620.
  • 49. Ebeid, S.J., M.R.A. Atia and M.M. Sayed, Prediction of Abrasive Water Jet Plain Milling Process Parameters Using Artificial Neural Networks. Journal of Machinery Manufacturing and Automation, 2014, 3(3): p. 56-73.
  • 50. Kumar, U.A., S.M. Alam and P. Laxminarayana, Influence of abrasive water jet cutting on glass fibre reinforced polymer (GFRP) composites. Materials Today: Proceedings, 2020, 27, p. 1651-1654.
  • 51. Alberdi, A., A. Rivero, L.N. López de Lacalle, I. Etxeberria and A. Suárez, Effect of process parameter on the kerf geometry in abrasive water jet milling. The International Journal of Advanced Manufacturing Technology, 2010, 51, p. 467–480.
  • 52. Srinivasu, D.S. and D.A. Axinte, Surface integrity analysis of plain waterjet milled advanced engineering composite materials. Procedia CIRP, 2014, 13, p. 371-376.
  • 53. Chithira Pon Selvan, M. Selection of Process Parameters in Abrasive Waterjet Cutting of Titanium. Proceedings of the 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET'2014): 2014, London, UK.
  • 54. Gokul, R., T. George, M. Naveenkumar, V. Manojanandha and M. Kanthababu, Experimental Investigations of Pocket Milling in Acrylic using Abrasive Water Jet Machining. International Journal of Engineering Research & Technology (IJERT): 2015, 3(26): p. 1-6.
  • 55. Shipway, P.H., G. Fowler and I.R. Pashby, Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear, 2005, 258(1-4): p. 123-132.
  • 56. Cenac, F., R. Zitoune, F. Collombet and M. Deleris, Abrasive water-jet milling of aeronautic aluminum 2024-T3. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2013.
  • 57. Dittrich, M., M. Dix, M. Kuhl, B. Palumbo and F. Tagliaferri, Process Analysis of Water Abrasive Fine Jet Structuring of Ceramic Surfaces via Design of Experiment. Procedia CIRP, 2014, 14, p. 442-447.
  • 58. Gupta, T.V.K., J. Ramkumar, P. Tandon and N.S. Vyas, Application of Artificial Neural Networks in Abrasive Water Jet Milling. Procedia CIRP, 2015, 37, p. 225-229.
  • 59. Kanthababu, M., M. Rajes Ram, R. Peter Nithin Emmanuel, R. Gokul and R. Radhik, Experimental Investigations on Pocket Milling of Titanium Alloy Using Abrasive Water Jet Machining. FME Transactions, 2016, 44(2): p. 133-138.
  • 60. Gong, J. and T.J. Kim, An erosion model for abrasive waterjet milling of polycrystalline ceramics. Wear, 1996, 199(1-2): p. 275-282.
  • 61. Paul, S., A.M. Hoogstrate, C.A. van Luttervelt and H.J.J. Kals, An experimental investigation of rectangular pocket milling with abrasive water jet. Journal of Materials Processing Technology, 1998, 73, p. 179–188.
  • 62. Ebeid, S.J., M.R.A. Atia and M.M. Sayed, Effect of Process Parameters on Abrasive Water Jet Plain Milling. The International Journal of Advanced Manufacturing Technology, 2023, 124, p. 1813-1826.
  • 63. Siddiqui, T.U. and M. Shukla, Modeling of Depth of Cut in Abrasive Waterjet Cutting of Thick Kevlar-Epoxy Composites. Key Engineering Materials, 2023, 443, p. 423-427.
  • 64. Fowler, G., P.H. Shipway and I.R. Pashby, Abrasive water-jet controlled depth milling of Ti6Al4V alloy – an investigation of the role of jet–workpiece traverse speed and abrasive grit size on the characteristics of the milled material. Journal of Materials Processing Technology, 2005, 161(3): p. 407-414.
  • 65. Pal, V.K. and P. Tandon, Identification of the role of machinability and milling depth on machining time in controlled depth milling using abrasive water jet. International Journal of Advanced Manufacturing Technology, 2012, 66, p. 877-881.
  • 66. Feng, Y.X., C.Z. Huang, J. Wang, R.G. Hou and X.Y. Lu, An Experimental Study on Milling Al2O3 Ceramics with Abrasive Waterjet. Key Engineering Materials, 2007, 339, p. 500-504.
  • 67. Müller, M., V. Kolář, J. Šulc, R.K. Mishra, M. Hromasová and B.K. Behera, Effect of Waterjet Machining Parameters on the Cut Quality of PP and PVC-U Materials Coated with Polyurethane and Acrylate Coatings. Materials, 2021, 14(24): 7542.
  • 68. Chen, J., Y. Yuan, H. Gao and T. Zhou, Analytical modeling of effective depth of cut for ductile materials via abrasive waterjet machining. The International Journal of Advanced Manufacturing Technology, 2023, 124, p.1813-1826.
  • 69. Vishnu, M. and P.G. Saleeshya, Abrasive Water Jet Machining Process Parameters Optimisation for Machining of Complex Profiled Component from Inconel 718 Super Alloys. Int. J. Manuf. Technol. Manag., 2021, p. 35, 127.
  • 70. Begic-Hajdarevic, D., A. Cekic, M. Mehmedovic and A. Djelmic, Experimental Study on Surface Roughness in Abrasive Water Jet Cutting. Procedia Eng., 2015, 100, p. 394-399.

Comprehensive and essential review of advanced researches abrasive waterjet machining

Year 2025, Volume: 9 Issue: 1, 50 - 69, 23.04.2025
https://doi.org/10.35860/iarej.1582470

Abstract

Abrasive Waterjet (AWJ) machining is a highly versatile non-conventional manufacturing technology, increasingly adopted across diverse industries due to its capability of processing a wide spectrum of materials, including metals, alloys, ceramics, composites, and polymers. Unlike conventional methods, AWJ utilizes high-pressure water mixed with abrasive particles to remove material by erosion, significantly reducing thermal effects, mechanical distortion, and material degradation. The performance and efficiency of AWJ machining are directly influenced by critical process parameters such as waterjet pressure, traverse speed, abrasive mass flow rate, stand-off distance, and nozzle geometry. Recent studies have shown that optimizing these parameters is essential to enhance surface finish, improve material removal rates, and reduce kerf defects such as taper angles and burr formation. This comprehensive review systematically synthesizes recent advancements and essential findings from the existing literature on AWJ machining. It emphasizes material-specific optimization strategies, explores critical interactions between machining parameters, and summarizes methodologies such as experimental designs, numerical modeling, response surface methodology, and artificial neural networks frequently used to optimize the AWJ process. Particular attention is given to identifying the underlying mechanisms influencing outcomes, such as material erosion phenomena, abrasive particle interactions with the material surface, crack initiation and propagation, as well as abrasive embedment. Furthermore, the review addresses current challenges, including achieving precision machining for hard-to-cut materials like superalloys (e.g., Inconel 718, Ti-6Al-4V) and fiber-reinforced polymer composites, highlighting recent solutions and future research directions. This extended synthesis provides valuable insights and standardized guidelines for industrial practitioners and researchers, facilitating broader adoption and continuous innovation within AWJ machining technology.

Ethical Statement

Etik beyan formuna ihtiyaç bulunmamaktadır.

References

  • 1. Ravi, R.R. and D.S. Srinivasu, A comprehensive parametric study on abrasive waterjet trepanning of Al-6061 alloy. Materials and Manufacturing Processes, 2023, 38(12): p. 1472-1494.
  • 2. Cano-Salinas, L., X. Sourd, K. Moussaoui, S. Le Roux, M. Salem, A. Hor and R. Zitoune, Effect of process parameters of Plain Water Jet on the cleaning quality, surface and material integrity of Inconel 718 milled by Abrasive Water Jet. Tribology International, 2023, 178, 108094.
  • 3. Płodzień, M., Ł. Żyłka, K. Żak and S. Wojciechowski, Modelling the Kerf Angle, Roughness and Waviness of the Surface of Inconel 718 in an Abrasive Water Jet Cutting Process. Materials, 2023, 16(15): 5288.
  • 4. Sourd, X., R. Zitoune, A. Hejjaji, M. Salem, A. Hor and D. Lamouche, Plain water jet cleaning of titanium alloy after abrasive water jet milling: Surface contamination and quality analysis in the context of maintenance. Wear, 2021, 477, 203833.
  • 5. Holmberg, J., A. Wretland and J. Berglund, Abrasive Water Jet Milling as an Efficient Manufacturing Method for Superalloy Gas Turbine Components. Journal of Manufacturing and Materials Processing, 2022, 6(124).
  • 6. Armağan, M. and A.A. Arıcı, Determination and prediction of surface and kerf properties in abrasive water jet machining of Fe-Cr-C based hardfacing wear plates. Journal of Manufacturing Processes, 2024, 117, p. 329-345.
  • 7. Doğankaya, E., M. Kahya and H.Ö. Ünver, Abrasive water jet machining of UHMWPE and trade-off optimization. Materials and Manufacturing Processes, 2020, 35(12): p. 1339-1351.
  • 8. Ganesan, D., S. Salunkhe, D. Panghal, A.P. Murali, S. Mahalingam, H. Tarigonda, S.R. Gawade and H.M.A.M. Hussein, Optimization of Abrasive Water Jet Machining Process Parameters on Onyx Composite Followed by Additive Manufacturing. Processes, 2023, 11, 2263.
  • 9. Müller, M., V. Kolář, J. Šulc, R.K. Mishra, M. Hromasová and B.K. Behera, Effect of waterjet machining parameters on the cut quality of PP and PVC-U materials coated with polyurethane and acrylate coatings. Materials, 2021, 14(24): 7542.
  • 10. Ruiz-Garcia, R., P.F. Mayuet Ares, J.M. Vazquez-Martinez and J. Salguero Gómez, Influence of Abrasive Waterjet Parameters on the Cutting and Drilling of CFRP/UNS A97075 and UNS A97075/CFRP Stacks. Materials, 2021, 12(1): 107.
  • 11. Murthy, B.R.N., E. Makki, S.R. Potti, A. Hiremath, G. Bolar, J. Giri and T. Sathish, Optimization of Process Parameters to Minimize the Surface Roughness of Abrasive Water Jet Machined Jute/Epoxy Composites for Different Fiber Inclinations. Journal of Composite Science, 2023, 7, 498.
  • 12. Gubencu, D.V., C. Opris and A.A. Han, Analysis of Kerf Quality Characteristics of Kevlar Fiber-Reinforced Polymers Cut by Abrasive Water Jet. Materials, 2023, 16(2182).
  • 13. Gopichand, G. and M. Sreenivasarao, Multi-response parametric optimisation of abrasive waterjet milling of Hastelloy C-276. SN Applied Sciences, 2020, 2(1764).
  • 14. Qian, Y., L. Wan, X. Wang, G. Zhang, X. Wang and D. Li, The cylindrical surface characteristics of AA7075 aluminum alloy machined by abrasive waterjet with circular cuts. Journal of Materials Research and Technology, 2023, 26, p. 4975-4988.
  • 15. Shi, H., K. Giasin, A. Barouni and Z. Zhang, An experimental assessment and optimisation of hole quality in Al2024-T3 aluminium alloy during abrasive water jet machining. The International Journal of Advanced Manufacturing Technology, 2024, 130, p. 5199–5218.
  • 16. Pal, V.K. and A.K. Sharma, Complex shaped micro-channels generation using tools fabricated by AWJ milling process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236(1): p. 194-201.
  • 17. Karkalos, N.E. and P. Karmiris-Obratański, A comprehensive study on the challenges of using pure water jet as post-treatment of abrasive water jet milled pockets in titanium alloy. Applied Sciences, 2024, 14(1741).
  • 18. Li, X., X. Ruan, J. Zou, X. Long and Z. Chen, Experiment on carbon fiber–reinforced plastic cutting by abrasive waterjet with specific emphasis on surface morphology. The International Journal of Advanced Manufacturing Technology, 2020, 107, p. 145–156.
  • 19. Bañon, F., A. Sambruno, P.F. Mayuet and Á. Gómez-Parra, Study of Abrasive Water Jet Machining as a Texturing Operation for Thin Aluminium Alloy UNS A92024. Materials, 2023, 16(3843).
  • 20. Hashish, M. An Investigation of Milling With Abrasive-Waterjets. Journal of Engineering for Industry, 1989, 111(2): p. 158-166.
  • 21. Wan, L., J. Liu, Y. Qian, X. Wang, S. Wu, H. Du and D. Li, Analytical modeling and multi-objective optimization algorithm for abrasive waterjet milling Ti6Al4V. The International Journal of Advanced Manufacturing Technology, 2023, 123, p. 4367-4384.
  • 22. Chen, J., Y. Yuan, H. Gao and T. Zhou, Analytical modeling of effective depth of cut for ductile materials via abrasive waterjet machining. The International Journal of Advanced Manufacturing Technology, 2023, 124 p.1813-1826.
  • 23. Wan, L., J. Liu, Y. Qian, X. Wang, S. Wu, H. Du and D. Li, Analytical modeling and multi-objective optimization algorithm for abrasive waterjet milling Ti6Al4V. The International Journal of Advanced Manufacturing Technology, 2022, 123, p. 4367-4384.
  • 24. Dekster, L., N.E. Karkalos, P. Karmiris-Obratáński and A.P. Markopoulos, Evaluation of the Machinability of Ti-6Al-4V Titanium Alloy by AWJM Using a Multipass Strategy. Applied Sciences, 2023, 13, 3774.
  • 25. Ramesh, P. and K. Mani, Prediction of surface roughness using machine learning approach for abrasive waterjet milling of alumina ceramic. The International Journal of Advanced Manufacturing Technology, 2021, 119, p. 503-516.
  • 26. Bui, V.H., P. Gilles, T. Sultan, G. Cohen and W. Rubio, Adaptive speed control for waterjet milling in pocket corners. The International Journal of Advanced Manufacturing Technology, 2019, 103, p. 77-89.
  • 27. Gowthama, K., H.M. Somasheker, B. Suresha, P.B. Singh, N. Rajini, F. Mohammad, H.A., Al-Lohedan and A.A. Soleiman, Characterization and optimization of abrasive water jet machining parameters of aluminium/silicon carbide composites. Materials Research Express, 2023, 10, 115505.
  • 28. Ozcan, Y., L.T. Tunc, J. Kopacka, B. Cetin, M. Sulitka, Modelling and simulation of controlled depth abrasive water jet machining (AWJM) for roughing passes of free-form surfaces. The International Journal of Advanced Manufacturing Technology, 2021, 114, p. 3581–3596.
  • 29. Shukla, M. Abrasive Water Jet Milling. In J.P. Davim (Ed.): Nontraditional Machining Processes, 2013, (pp. 177-203). Springer-Verlag London.
  • 30. Arun, A., K. Rajkumar, S. Sasidharan and C. Balasubramaniyan, Process parameters optimization in machining of monel 400 alloy using abrasive water jet machining. Materials Today: Proceedings, 2024, 98, p. 28-32.
  • 31. Rammohan, S., S.T. Kumaran, M. Uthayakumar and A. Velayutham, Numerical Modeling of Kerf Generation in Abrasive Waterjet Machining of Military Grade Armor Steel. Human Factors and Mechanical Engineering for Defense and Safety, 2023, 7(1).
  • 32. Uhlmann, E., C. Männel and T. Braun, Efficient abrasive water jet milling for near-net-shape fabrication of difficult-to-cut materials. The International Journal of Advanced Manufacturing Technology, 2020, 111, p. 685-693.
  • 33. Gowthama, K., H.M. Somasheker, B. Suresha, P.B. Singh, N. Rajini, F. Mohammad, H. Al-Lohedan and A.A. Soleiman, Characterization and optimization of abrasive water jet machining parameters of aluminium/silicon carbide composites. Materials Research Express, 2023, 10, 115505.
  • 34. Duspara, M., V. Starčević, I. Samardžić and M. Horvat, Optimization of abrasive waterjet machining process parameters. Tehnički Glasnik, 2017, 11(4): p. 143-149.
  • 35. Kesharwani, G.S. Controlled Depth Milling of Ti-6Al-4V Alloy using Non-spherical (Triangular & Trapezoidal) Sharp edge shape ceramics abrasive particle in Abrasive Water Jet Machining. International Journal of Scientific and Engineering Research, 2015, 6(5): p. 183-188.
  • 36. Hocheng, H., H.Y. Tsai, J.J. Shiue and B. Wang, Feasibility Study of Abrasive-Waterjet Milling of Fiber-Reinforced Plastics. Journal of Manufacturing Science and Engineering, 1997, 119(2): p. 133-142.
  • 37. Ramkumar, J. and G. Gupta, Hybrid Abrasive Water Jet and Milling Process. In Micromanufacturing Lab, 2020, I.I.T. Kanpur.
  • 38. Patel, J.K. and A.A. Shaikh, The influence of abrasive water jet machining parameters on various responses—A review. International Journal of Mechanical Engineering and Robotics Research, 2015, 4(1): p. 383-403.
  • 39. Escobar-Palafox, G.A., R.S. Gault and K. Ridgway, Characterisation of abrasive water-jet process for pocket milling in Inconel 718. Procedia CIRP, 2012, 1, p. 404-408.
  • 40. Hashish, M. AWJ milling of gamma titanium aluminide. Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference, 2009.
  • 41. Hutyrová, Z., J. Ščučka, S. Hloch, P. Hlaváček and M. Zeleňák, Turning of wood plastic composites by water jet and abrasive water jet. The International Journal of Advanced Manufacturing Technology, 2015, 84, p. 1615–1623.
  • 42. Ting, H.Y., M. Asmelash, A. Azhari, T. Alemu and K. Saptaji, Prediction of surface roughness of titanium alloy in abrasive waterjet machining process. International Journal on Interactive Design and Manufacturing (IJIDeM): 2022, 16, p. 281-289.
  • 43. Goutham, U., B.S. Hasu, G. Chakraverti and M. Kanthababu, Experimental Investigation of Pocket Milling on Inconel 825 using Abrasive Water Jet Machining. International Journal of Current Engineering and Technology, 2016, 6(1): p. 295-302.
  • 44. Hussien, A.A., I. Qasem, P.S. Kataraki, W. Al-Kouz and A.A. Janvekar, Studying the Performance of Cutting Carbon Fibre-Reinforced Plastic Using an Abrasive Water Jet Technique. Strojniški vestnik - Journal of Mechanical Engineering, 2021, 67(4): p. 135-141.
  • 45. Murthy, B.R.N., R.P.K.J. Beedu and S.R. Potti, Study on Machining Quality in Abrasive Water Jet Machining of Jute-Polymer Composite and Optimization of Process Parameters through Grey Relational Analysis. Journal of Composite Science, 2024, 8(1): 20.
  • 46. Fowler, G., P.H. Shipway and I.R. Pashby, A technical note on grit embedment following abrasive water-jet milling of a titanium alloy. Journal of Materials Processing Technology, 2005, 159(3): p. 356-368.
  • 47. Yuan, Y., J. Chen, H. Gao and X. Wang, An investigation into the abrasive waterjet milling circular pocket on titanium alloy. The International Journal of Advanced Manufacturing Technology, 2020, 107, p. 4503-4515.
  • 48. Fowler, G., I.R. Pashby and P.H. Shipway, The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear, 2009, 266(6-7): p. 613-620.
  • 49. Ebeid, S.J., M.R.A. Atia and M.M. Sayed, Prediction of Abrasive Water Jet Plain Milling Process Parameters Using Artificial Neural Networks. Journal of Machinery Manufacturing and Automation, 2014, 3(3): p. 56-73.
  • 50. Kumar, U.A., S.M. Alam and P. Laxminarayana, Influence of abrasive water jet cutting on glass fibre reinforced polymer (GFRP) composites. Materials Today: Proceedings, 2020, 27, p. 1651-1654.
  • 51. Alberdi, A., A. Rivero, L.N. López de Lacalle, I. Etxeberria and A. Suárez, Effect of process parameter on the kerf geometry in abrasive water jet milling. The International Journal of Advanced Manufacturing Technology, 2010, 51, p. 467–480.
  • 52. Srinivasu, D.S. and D.A. Axinte, Surface integrity analysis of plain waterjet milled advanced engineering composite materials. Procedia CIRP, 2014, 13, p. 371-376.
  • 53. Chithira Pon Selvan, M. Selection of Process Parameters in Abrasive Waterjet Cutting of Titanium. Proceedings of the 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET'2014): 2014, London, UK.
  • 54. Gokul, R., T. George, M. Naveenkumar, V. Manojanandha and M. Kanthababu, Experimental Investigations of Pocket Milling in Acrylic using Abrasive Water Jet Machining. International Journal of Engineering Research & Technology (IJERT): 2015, 3(26): p. 1-6.
  • 55. Shipway, P.H., G. Fowler and I.R. Pashby, Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear, 2005, 258(1-4): p. 123-132.
  • 56. Cenac, F., R. Zitoune, F. Collombet and M. Deleris, Abrasive water-jet milling of aeronautic aluminum 2024-T3. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2013.
  • 57. Dittrich, M., M. Dix, M. Kuhl, B. Palumbo and F. Tagliaferri, Process Analysis of Water Abrasive Fine Jet Structuring of Ceramic Surfaces via Design of Experiment. Procedia CIRP, 2014, 14, p. 442-447.
  • 58. Gupta, T.V.K., J. Ramkumar, P. Tandon and N.S. Vyas, Application of Artificial Neural Networks in Abrasive Water Jet Milling. Procedia CIRP, 2015, 37, p. 225-229.
  • 59. Kanthababu, M., M. Rajes Ram, R. Peter Nithin Emmanuel, R. Gokul and R. Radhik, Experimental Investigations on Pocket Milling of Titanium Alloy Using Abrasive Water Jet Machining. FME Transactions, 2016, 44(2): p. 133-138.
  • 60. Gong, J. and T.J. Kim, An erosion model for abrasive waterjet milling of polycrystalline ceramics. Wear, 1996, 199(1-2): p. 275-282.
  • 61. Paul, S., A.M. Hoogstrate, C.A. van Luttervelt and H.J.J. Kals, An experimental investigation of rectangular pocket milling with abrasive water jet. Journal of Materials Processing Technology, 1998, 73, p. 179–188.
  • 62. Ebeid, S.J., M.R.A. Atia and M.M. Sayed, Effect of Process Parameters on Abrasive Water Jet Plain Milling. The International Journal of Advanced Manufacturing Technology, 2023, 124, p. 1813-1826.
  • 63. Siddiqui, T.U. and M. Shukla, Modeling of Depth of Cut in Abrasive Waterjet Cutting of Thick Kevlar-Epoxy Composites. Key Engineering Materials, 2023, 443, p. 423-427.
  • 64. Fowler, G., P.H. Shipway and I.R. Pashby, Abrasive water-jet controlled depth milling of Ti6Al4V alloy – an investigation of the role of jet–workpiece traverse speed and abrasive grit size on the characteristics of the milled material. Journal of Materials Processing Technology, 2005, 161(3): p. 407-414.
  • 65. Pal, V.K. and P. Tandon, Identification of the role of machinability and milling depth on machining time in controlled depth milling using abrasive water jet. International Journal of Advanced Manufacturing Technology, 2012, 66, p. 877-881.
  • 66. Feng, Y.X., C.Z. Huang, J. Wang, R.G. Hou and X.Y. Lu, An Experimental Study on Milling Al2O3 Ceramics with Abrasive Waterjet. Key Engineering Materials, 2007, 339, p. 500-504.
  • 67. Müller, M., V. Kolář, J. Šulc, R.K. Mishra, M. Hromasová and B.K. Behera, Effect of Waterjet Machining Parameters on the Cut Quality of PP and PVC-U Materials Coated with Polyurethane and Acrylate Coatings. Materials, 2021, 14(24): 7542.
  • 68. Chen, J., Y. Yuan, H. Gao and T. Zhou, Analytical modeling of effective depth of cut for ductile materials via abrasive waterjet machining. The International Journal of Advanced Manufacturing Technology, 2023, 124, p.1813-1826.
  • 69. Vishnu, M. and P.G. Saleeshya, Abrasive Water Jet Machining Process Parameters Optimisation for Machining of Complex Profiled Component from Inconel 718 Super Alloys. Int. J. Manuf. Technol. Manag., 2021, p. 35, 127.
  • 70. Begic-Hajdarevic, D., A. Cekic, M. Mehmedovic and A. Djelmic, Experimental Study on Surface Roughness in Abrasive Water Jet Cutting. Procedia Eng., 2015, 100, p. 394-399.
There are 70 citations in total.

Details

Primary Language English
Subjects Machine Design and Machine Equipment, Material Design and Behaviors
Journal Section Review Articles
Authors

Fuat Kartal 0000-0002-2567-9705

Arslan Kaptan 0000-0002-2431-9329

Early Pub Date May 1, 2025
Publication Date April 23, 2025
Submission Date November 10, 2024
Acceptance Date April 10, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Kartal, F., & Kaptan, A. (2025). Comprehensive and essential review of advanced researches abrasive waterjet machining. International Advanced Researches and Engineering Journal, 9(1), 50-69. https://doi.org/10.35860/iarej.1582470
AMA Kartal F, Kaptan A. Comprehensive and essential review of advanced researches abrasive waterjet machining. Int. Adv. Res. Eng. J. April 2025;9(1):50-69. doi:10.35860/iarej.1582470
Chicago Kartal, Fuat, and Arslan Kaptan. “Comprehensive and Essential Review of Advanced Researches Abrasive Waterjet Machining”. International Advanced Researches and Engineering Journal 9, no. 1 (April 2025): 50-69. https://doi.org/10.35860/iarej.1582470.
EndNote Kartal F, Kaptan A (April 1, 2025) Comprehensive and essential review of advanced researches abrasive waterjet machining. International Advanced Researches and Engineering Journal 9 1 50–69.
IEEE F. Kartal and A. Kaptan, “Comprehensive and essential review of advanced researches abrasive waterjet machining”, Int. Adv. Res. Eng. J., vol. 9, no. 1, pp. 50–69, 2025, doi: 10.35860/iarej.1582470.
ISNAD Kartal, Fuat - Kaptan, Arslan. “Comprehensive and Essential Review of Advanced Researches Abrasive Waterjet Machining”. International Advanced Researches and Engineering Journal 9/1 (April2025), 50-69. https://doi.org/10.35860/iarej.1582470.
JAMA Kartal F, Kaptan A. Comprehensive and essential review of advanced researches abrasive waterjet machining. Int. Adv. Res. Eng. J. 2025;9:50–69.
MLA Kartal, Fuat and Arslan Kaptan. “Comprehensive and Essential Review of Advanced Researches Abrasive Waterjet Machining”. International Advanced Researches and Engineering Journal, vol. 9, no. 1, 2025, pp. 50-69, doi:10.35860/iarej.1582470.
Vancouver Kartal F, Kaptan A. Comprehensive and essential review of advanced researches abrasive waterjet machining. Int. Adv. Res. Eng. J. 2025;9(1):50-69.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.