Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 118 - 129
https://doi.org/10.35860/iarej.1685911

Abstract

Project Number

This work was supported by Scientific Research Projects Coordination Unit of Bandirma Onyedi Eylul University under Project Number: BAP 24-1003-003.

References

  • 1. Eryildiz, M., Comparison of notch fabrication methods on the impact strength of FDM-3D-printed PLA specimens. Materials Testing, 2023. 65(3): p. 423–430. doi:10.1515/mt-2022-0306.
  • 2. Cicek, U.I. and Johnson, A.A. Multi-objective optimization of FDM process parameters for 3D-printed polycarbonate using Taguchi-Based Gray Relational Analysis. The International Journal of Advanced Manufacturing Technology, 2025. 137: p. 3709–3725. doi:10.1007/s00170-025-15392-3.
  • 3. Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto, F. and du Plessis, A. Metal additive manufacturing in aerospace: A review. Materials & Design, 2021. 209: 110008. doi:10.1016/j.matdes.2021.110008.
  • 4. Altan, M., Eryildiz, M., Gumus, B. and Kahraman, Y. Effects of process parameters on the quality of PLA products fabricated by Fused Deposition Modeling (FDM): Surface roughness and tensile strength. Materials Testing, 2018. 60(5): p. 471–477. doi:10.3139/120.111178.
  • 5. Basar, G., Der, O. and Guvenc, M.A. AI-powered hybrid metaheuristic optimization for predicting surface roughness and kerf width in CO2 laser cutting of 3D-printed PLA-CF composites. Journal of Thermoplastic Composite Materials, doi: 08927057251344183.
  • 6. Eryıldız, M. Effect of Build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: An experimental investigation. European Mechanical Science 2021. 5(3): p. 116–120. doi:10.26701/ems.881254.
  • 7. Beltrán, F.R., Arrieta, M.P., Moreno, E., Gaspar, G., Muneta, L.M., Carrasco-Gallego, R., Yáñez, S., Hidalgo-Carvajal, D., de la Orden, M.U. and Martínez Urreaga, J. Evaluation of the technical viability of distributed mechanical recycling of PLA 3D printing wastes. Polymers (Basel), 2021. 13(8): 1247. doi:10.3390/polym13081247.
  • 8. Der, O., Alqahtani, A.A., Marengo, M. and Bertola, V. Characterization of polypropylene pulsating heat stripes: effects of orientation, heat transfer fluid, and loop geometry. Applied Thermal Engineering, 2021. 184: 116304. doi:10.1016/j.applthermaleng.2020.116304.
  • 9. Der, O., Ordu, M. and Basar, G. Optimization of cutting parameters in manufacturing of polymeric materials for flexible two-phase thermal management systems. Materials Testing, 2024. 66(10): p. 1700–1719. doi:10.1515/mt-2024-0127.
  • 10. Der, O. and Bertola, V. An experimental investigation of oil-water flow in a serpentine channel. International Journal of Multiphase Flow, 2020. 129: 103327. doi:10.1016/j.ijmultiphaseflow.2020.103327.
  • 11. Petousis, M., Ninikas, K., Vidakis, N., Mountakis, N. and Kechagias, J.D. Multifunctional PLA/CNTs nanocomposites hybrid 3D Printing integrating material extrusion and CO2 laser cutting. Journal of Manufacturing Processes, 2023. 86: p. 237–252. doi:10.1016/j.jmapro.2022.12.060.
  • 12. Abdo, D., Khalid, M., Ebrahim Almarzooqi, F., Mohamed Saeed, S., Obaid Alshemeili, A. and Airani, Y. Evaluating the geometrical accuracy and surface morphology of 3D-printed PLA parts processed with CO2 laser cutting. In 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). 2023, March. p. 59–62. IEEE.
  • 13. Kechagias, J.D., Ninikas, K., Petousis, M., Vidakis, N. and Vaxevanidis, N. An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design. Materials and Manufacturing Processes, 2021. 36(13): p. 1544–1553. doi:10.1080/10426914.2021.1906892.
  • 14. Moradi, M., Karami Moghadam, M., Shamsborhan, M., Bodaghi, M. and Falavandi, H. Post-processing of FDM 3D-printed polylactic acid parts by laser beam cutting. Polymers (Basel), 2020. 12(3): 550. doi:10.3390/polym12030550.
  • 15. Kechagias, J.D., Fountas, N.A., Ninikas, K. and Vaxevanidis, N.M. Kerf geometry and surface roughness optimization in CO2 laser processing of FFF plates utilizing Neural Networks and Genetic Algorithms approaches. Journal of Manufacturing and Materials Processing, 2023. 7(2): 77. doi:10.3390/jmmp7020077.
  • 16. Kumar, K.N. and Babu, P.D. Investigation on polymer hybrid composite through CO2 laser machining for precise machining conditions. International Journal of Precision Engineering and Manufacturing, 2024. 25: p. 1043–1061. doi:10.1007/s12541-023-00942-0.
  • 17. Hajiaghaei-Keshteli, M., Cenk, Z., Erdebilli, B., Selim Özdemir, Y. and Gholian-Jouybari, F. Pythagorean Fuzzy TOPSIS method for green supplier selection in the food industry. Expert Systems with Applications, 2023. 224: 120036. doi:10.1016/j.eswa.2023.120036.
  • 18. Fuse, K., Dalsaniya, A., Modi, D., Vora, J., Pimenov, D.Y., Giasin, K., Prajapati, P., Chaudhari, R. and Wojciechowski, S. Integration of Fuzzy AHP and Fuzzy TOPSIS methods for wire electric discharge machining of titanium (Ti6Al4V) alloy using RSM. Materials, 2021. 14(23): 7408. doi:10.3390/ma14237408.
  • 19. Chatterjee, S. and Chakraborty, S. A study on the effects of objective weighting methods on TOPSIS-based parametric optimization of non-traditional machining processes. Decision Analytics Journal, 2024. 11: 100451. doi:10.1016/j.dajour.2024.100451.
  • 20. Patil, A.S., Sunnapwar, V.K., Bhole, K.S., Oza, A.D., Shinde, S.M. and Ramesh, R. Effective machining parameter selection through Fuzzy AHP-TOPSIS for 3D finish milling of Ti6Al4V. International Journal on Interactive Design and Manufacturing (IJIDeM), 2022. doi:10.1007/s12008-022-00993-z.
  • 21. Sabri, H., Mehrabi, O., Khoran, M. and Moradi, M. Leveraging CO2 laser cutting for enhancing Fused Deposition Modeling (FDM) 3D printed PETG parts through postprocessing. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2024. doi:10.1177/09544089241274037.
  • 22. Stathopoulos, N., Belessiotis, G., Oikonomou, P. and Papanicolaou, E. Experimental investigation of thermal degradation of phase change materials for medium-temperature thermal energy storage and tightness during cycling inside metal spheres. Journal of Energy Storage, 2020. 31: 101618. doi:10.1016/j.est.2020.101618.
  • 23. Yilbas, B.S. Laser cutting of thick sheet metals: Effects of cutting parameters on kerf size variations. Journal of Materials Processing Technology, 2008. 201: p. 285–290. doi:10.1016/j.jmatprotec.2007.11.265.
  • 24. Boujelbene, M. Influence of the CO2 laser cutting process parameters on the Quadratic Mean Roughness Rq of the low carbon steel. Procedia Manufacturing, 2018. 20: p. 259–264. doi:10.1016/j.promfg.2018.02.038.
  • 25. Moradi, M., Moghadam, M.K., Shamsborhan, M., Beiranvand, Z.M., Rasouli, A., Vahdati, M., Bakhtiari, A. and Bodaghi, M. Simulation, statistical modeling, and optimization of CO2 laser cutting process of polycarbonate sheets. Optik (Stuttg), 2021. 225: 164932. doi:10.1016/j.ijleo.2020.164932.
  • 26. Bhattacharya, S., Kalita, K., Čep, R. and Chakraborty, S. A comparative analysis on prediction performance of regression models during machining of composite materials. Materials, 2021. 14: 6689. doi:10.3390/ma14216689.

TOPSIS-based multi-response optimization for improving CO2 laser cutting quality of 3D printed PLA

Year 2025, Volume: 9 Issue: 2, 118 - 129
https://doi.org/10.35860/iarej.1685911

Abstract

In the present study, CO2 laser cutting was performed on PLA plates produced using fused filament fabrication (FFF), one of the most common additive manufacturing methods. Main process factors included the thickness of the plates (2.5 and 3.5 mm), laser power (90, 95, and 100 W), and cutting speed (3, 6, and 9 mm/s). The cutting quality was evaluated based on the following four key performance responses: surface roughness (Ra), top kerf width (Top KW), bottom kerf width (Bottom KW), and the bottom heat-affected zone (Bottom HAZ). Main effect plots illustrated the impact of cutting parameters on each response. The analysis of variance (ANOVA) proved that cutting speed had the most significant effect on surface roughness and kerf widths as it was almost 93.51% and 94.17%, respectively, of the total variation. All responses were modeled via regression, and high R² values ranging from 88.01% to 98.97% showed the excellent model fitness in predicting experimental results. In view of simultaneous treatments of joint quality characteristics in an optimal cutting condition, a well-known multicriteria decision-making method, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), was employed. It shows improvement in surface roughness, width of the kerfs, and values of HAZ under conditions. Based on the results of TOPSIS, the best cutting condition was found to be a plate thickness of 2.5 mm, with a laser power of 90 W and a cutting speed of 9 mm/s. Such conditions secured a 51.75% improvement in surface roughness, with a significant reduction in both kerf width and HAZ, thus presenting a positive guideline toward improving post-processing quality from laser cutting on FFF-printed PLA parts.

Project Number

This work was supported by Scientific Research Projects Coordination Unit of Bandirma Onyedi Eylul University under Project Number: BAP 24-1003-003.

References

  • 1. Eryildiz, M., Comparison of notch fabrication methods on the impact strength of FDM-3D-printed PLA specimens. Materials Testing, 2023. 65(3): p. 423–430. doi:10.1515/mt-2022-0306.
  • 2. Cicek, U.I. and Johnson, A.A. Multi-objective optimization of FDM process parameters for 3D-printed polycarbonate using Taguchi-Based Gray Relational Analysis. The International Journal of Advanced Manufacturing Technology, 2025. 137: p. 3709–3725. doi:10.1007/s00170-025-15392-3.
  • 3. Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto, F. and du Plessis, A. Metal additive manufacturing in aerospace: A review. Materials & Design, 2021. 209: 110008. doi:10.1016/j.matdes.2021.110008.
  • 4. Altan, M., Eryildiz, M., Gumus, B. and Kahraman, Y. Effects of process parameters on the quality of PLA products fabricated by Fused Deposition Modeling (FDM): Surface roughness and tensile strength. Materials Testing, 2018. 60(5): p. 471–477. doi:10.3139/120.111178.
  • 5. Basar, G., Der, O. and Guvenc, M.A. AI-powered hybrid metaheuristic optimization for predicting surface roughness and kerf width in CO2 laser cutting of 3D-printed PLA-CF composites. Journal of Thermoplastic Composite Materials, doi: 08927057251344183.
  • 6. Eryıldız, M. Effect of Build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: An experimental investigation. European Mechanical Science 2021. 5(3): p. 116–120. doi:10.26701/ems.881254.
  • 7. Beltrán, F.R., Arrieta, M.P., Moreno, E., Gaspar, G., Muneta, L.M., Carrasco-Gallego, R., Yáñez, S., Hidalgo-Carvajal, D., de la Orden, M.U. and Martínez Urreaga, J. Evaluation of the technical viability of distributed mechanical recycling of PLA 3D printing wastes. Polymers (Basel), 2021. 13(8): 1247. doi:10.3390/polym13081247.
  • 8. Der, O., Alqahtani, A.A., Marengo, M. and Bertola, V. Characterization of polypropylene pulsating heat stripes: effects of orientation, heat transfer fluid, and loop geometry. Applied Thermal Engineering, 2021. 184: 116304. doi:10.1016/j.applthermaleng.2020.116304.
  • 9. Der, O., Ordu, M. and Basar, G. Optimization of cutting parameters in manufacturing of polymeric materials for flexible two-phase thermal management systems. Materials Testing, 2024. 66(10): p. 1700–1719. doi:10.1515/mt-2024-0127.
  • 10. Der, O. and Bertola, V. An experimental investigation of oil-water flow in a serpentine channel. International Journal of Multiphase Flow, 2020. 129: 103327. doi:10.1016/j.ijmultiphaseflow.2020.103327.
  • 11. Petousis, M., Ninikas, K., Vidakis, N., Mountakis, N. and Kechagias, J.D. Multifunctional PLA/CNTs nanocomposites hybrid 3D Printing integrating material extrusion and CO2 laser cutting. Journal of Manufacturing Processes, 2023. 86: p. 237–252. doi:10.1016/j.jmapro.2022.12.060.
  • 12. Abdo, D., Khalid, M., Ebrahim Almarzooqi, F., Mohamed Saeed, S., Obaid Alshemeili, A. and Airani, Y. Evaluating the geometrical accuracy and surface morphology of 3D-printed PLA parts processed with CO2 laser cutting. In 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). 2023, March. p. 59–62. IEEE.
  • 13. Kechagias, J.D., Ninikas, K., Petousis, M., Vidakis, N. and Vaxevanidis, N. An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design. Materials and Manufacturing Processes, 2021. 36(13): p. 1544–1553. doi:10.1080/10426914.2021.1906892.
  • 14. Moradi, M., Karami Moghadam, M., Shamsborhan, M., Bodaghi, M. and Falavandi, H. Post-processing of FDM 3D-printed polylactic acid parts by laser beam cutting. Polymers (Basel), 2020. 12(3): 550. doi:10.3390/polym12030550.
  • 15. Kechagias, J.D., Fountas, N.A., Ninikas, K. and Vaxevanidis, N.M. Kerf geometry and surface roughness optimization in CO2 laser processing of FFF plates utilizing Neural Networks and Genetic Algorithms approaches. Journal of Manufacturing and Materials Processing, 2023. 7(2): 77. doi:10.3390/jmmp7020077.
  • 16. Kumar, K.N. and Babu, P.D. Investigation on polymer hybrid composite through CO2 laser machining for precise machining conditions. International Journal of Precision Engineering and Manufacturing, 2024. 25: p. 1043–1061. doi:10.1007/s12541-023-00942-0.
  • 17. Hajiaghaei-Keshteli, M., Cenk, Z., Erdebilli, B., Selim Özdemir, Y. and Gholian-Jouybari, F. Pythagorean Fuzzy TOPSIS method for green supplier selection in the food industry. Expert Systems with Applications, 2023. 224: 120036. doi:10.1016/j.eswa.2023.120036.
  • 18. Fuse, K., Dalsaniya, A., Modi, D., Vora, J., Pimenov, D.Y., Giasin, K., Prajapati, P., Chaudhari, R. and Wojciechowski, S. Integration of Fuzzy AHP and Fuzzy TOPSIS methods for wire electric discharge machining of titanium (Ti6Al4V) alloy using RSM. Materials, 2021. 14(23): 7408. doi:10.3390/ma14237408.
  • 19. Chatterjee, S. and Chakraborty, S. A study on the effects of objective weighting methods on TOPSIS-based parametric optimization of non-traditional machining processes. Decision Analytics Journal, 2024. 11: 100451. doi:10.1016/j.dajour.2024.100451.
  • 20. Patil, A.S., Sunnapwar, V.K., Bhole, K.S., Oza, A.D., Shinde, S.M. and Ramesh, R. Effective machining parameter selection through Fuzzy AHP-TOPSIS for 3D finish milling of Ti6Al4V. International Journal on Interactive Design and Manufacturing (IJIDeM), 2022. doi:10.1007/s12008-022-00993-z.
  • 21. Sabri, H., Mehrabi, O., Khoran, M. and Moradi, M. Leveraging CO2 laser cutting for enhancing Fused Deposition Modeling (FDM) 3D printed PETG parts through postprocessing. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2024. doi:10.1177/09544089241274037.
  • 22. Stathopoulos, N., Belessiotis, G., Oikonomou, P. and Papanicolaou, E. Experimental investigation of thermal degradation of phase change materials for medium-temperature thermal energy storage and tightness during cycling inside metal spheres. Journal of Energy Storage, 2020. 31: 101618. doi:10.1016/j.est.2020.101618.
  • 23. Yilbas, B.S. Laser cutting of thick sheet metals: Effects of cutting parameters on kerf size variations. Journal of Materials Processing Technology, 2008. 201: p. 285–290. doi:10.1016/j.jmatprotec.2007.11.265.
  • 24. Boujelbene, M. Influence of the CO2 laser cutting process parameters on the Quadratic Mean Roughness Rq of the low carbon steel. Procedia Manufacturing, 2018. 20: p. 259–264. doi:10.1016/j.promfg.2018.02.038.
  • 25. Moradi, M., Moghadam, M.K., Shamsborhan, M., Beiranvand, Z.M., Rasouli, A., Vahdati, M., Bakhtiari, A. and Bodaghi, M. Simulation, statistical modeling, and optimization of CO2 laser cutting process of polycarbonate sheets. Optik (Stuttg), 2021. 225: 164932. doi:10.1016/j.ijleo.2020.164932.
  • 26. Bhattacharya, S., Kalita, K., Čep, R. and Chakraborty, S. A comparative analysis on prediction performance of regression models during machining of composite materials. Materials, 2021. 14: 6689. doi:10.3390/ma14216689.
There are 26 citations in total.

Details

Primary Language English
Subjects Optimization in Manufacturing
Journal Section Research Articles
Authors

Oğuzhan Der 0000-0001-5679-2594

Gökhan Başar 0000-0002-9696-7579

Project Number This work was supported by Scientific Research Projects Coordination Unit of Bandirma Onyedi Eylul University under Project Number: BAP 24-1003-003.
Publication Date
Submission Date April 28, 2025
Acceptance Date July 14, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Der, O., & Başar, G. (n.d.). TOPSIS-based multi-response optimization for improving CO2 laser cutting quality of 3D printed PLA. International Advanced Researches and Engineering Journal, 9(2), 118-129. https://doi.org/10.35860/iarej.1685911
AMA Der O, Başar G. TOPSIS-based multi-response optimization for improving CO2 laser cutting quality of 3D printed PLA. Int. Adv. Res. Eng. J. 9(2):118-129. doi:10.35860/iarej.1685911
Chicago Der, Oğuzhan, and Gökhan Başar. “TOPSIS-Based Multi-Response Optimization for Improving CO2 Laser Cutting Quality of 3D Printed PLA”. International Advanced Researches and Engineering Journal 9, no. 2 n.d.: 118-29. https://doi.org/10.35860/iarej.1685911.
EndNote Der O, Başar G TOPSIS-based multi-response optimization for improving CO2 laser cutting quality of 3D printed PLA. International Advanced Researches and Engineering Journal 9 2 118–129.
IEEE O. Der and G. Başar, “TOPSIS-based multi-response optimization for improving CO2 laser cutting quality of 3D printed PLA”, Int. Adv. Res. Eng. J., vol. 9, no. 2, pp. 118–129, doi: 10.35860/iarej.1685911.
ISNAD Der, Oğuzhan - Başar, Gökhan. “TOPSIS-Based Multi-Response Optimization for Improving CO2 Laser Cutting Quality of 3D Printed PLA”. International Advanced Researches and Engineering Journal 9/2 (n.d.), 118-129. https://doi.org/10.35860/iarej.1685911.
JAMA Der O, Başar G. TOPSIS-based multi-response optimization for improving CO2 laser cutting quality of 3D printed PLA. Int. Adv. Res. Eng. J.;9:118–129.
MLA Der, Oğuzhan and Gökhan Başar. “TOPSIS-Based Multi-Response Optimization for Improving CO2 Laser Cutting Quality of 3D Printed PLA”. International Advanced Researches and Engineering Journal, vol. 9, no. 2, pp. 118-29, doi:10.35860/iarej.1685911.
Vancouver Der O, Başar G. TOPSIS-based multi-response optimization for improving CO2 laser cutting quality of 3D printed PLA. Int. Adv. Res. Eng. J. 9(2):118-29.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.