Year 2018, Volume 4 , Issue 1, Pages 49 - 62 2018-04-18

İyon kanalları yaşayan hücrelerin temel yapısal elemanları içindedir. Son yıllarda iyon kanallarının tümör gelişiminde ve kanserin ilerleyişinde hayati öneme sahip olduğu ortaya çıkmıştır. Normal bir hücrenin kansere dönüşümü sırasında iyon kanallarının ekspresyonunu etkileyebilen veya iyon kanal aktivitesinde bir değişime neden olabilen bir seri genetik değişim meydana gelmektedir. İyon kanalları kanser hücresinde proliferasyon, apoptoz, migrasyon, anjiyogenez ve metastaz ile ilişkilidir. İyon kanalları halen onkolojide yeni bir araştırma alanını oluşturmaktadır. Sonuçta iyon kanallarının kanserle ilgili anahtar süreçlerdeki rollerinin ayrıntılı bir şekilde anlaşılması, tanı ve tedavi için moleküler-hedefli araçların geliştirilmesini kolaylaştıracaktır.

Kanser, iyon kanalları, metastaz, yeni hedefler, proliferasyon
  • 1. Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med 2010;16:107-21.
  • 2. Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 2004;448:274-86.
  • 3. O'Grady SM, Lee SY. Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int J Biochem Cell Biol 2005;37:1578-94.
  • 4. Pardo LA. Voltage-gated potassium channels in cell proliferation. Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 2004;19:285-92.
  • 5. Chang KW, Yuan TC, Fang KP, Yang FS, Liu CJ, Chang CS, et al. The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. J Oral Pathol Med 2003;32:606-11.
  • 6. Abdul M, Hoosein N. Voltage-gated potassium ion channels in colon cancer. Oncol Rep 2002;9:961-64.
  • 7. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, et al. herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 1998;58:815-22.
  • 8. Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, et al. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 2007;26:2525-34.
  • 9. Kunzelmann K. Ion channels and cancer. J Membr Biol 2005;205:159-73.
  • 10. Patel AJ, Lazdunski M. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch 2004;448:261-73.
  • 11. Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, et al. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 2003;3:297-302.
  • 12. Kim CJ, Cho YG, Jeong SW, Kim YS, Kim SY, Nam SW, et al. Altered expression of KCNK9 in colorectal cancers. APMIS 2004;112:588-94.
  • 13. Malhi H, Irani AN, Rajvanshi P, Suadicani SO, Spray DC, McDonald TV, et al. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting. J Biol Chem 2000;275:26050-7.
  • 14. Klimatcheva E, Wonderlin WF. An ATP-sensitive K(+) current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. J Membr Biol 1999;171:35-46.
  • 15. Cunningham SA, Awayda MS, Bubien JK, Ismailov II, Arrate MP, Berdiev BK, et al. Cloning of an epithelial chloride channel from bovine trachea. J Biol Chem. 1995;270:31016-26.
  • 16. Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 2001;276:25438-46.
  • 17. Jirsch J, Deeley RG, Cole SP, Stewart AJ, Fedida D. Inwardly rectifying K+ channels and volume-regulated anion channels in multidrug-resistant small cell lung cancer cells. Cancer Res 1993;53:4156-60.
  • 18. Shuba YM, Prevarskaya N, Lemonnier L, Van Coppenolle F, Kostyuk PG, Mauroy B, et al. Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line. Am J Physiol Cell Physiol 2000;279:1144-54.
  • 19. Gérard V, Rouzaire-Dubois B, Dilda P, Dubois JM. Alterations of ionic membrane permeabilities in multidrug-resistant neuroblastoma x glioma hybrid cells. J Exp Biol 1998;201:21-31.
  • 20. Schlichter LC, Sakellaropoulos G, Ballyk B, Pennefather PS, Phipps DJ. Properties of K+ and Cl- channels and their involvement in proliferation of rat microglial cells. Glia 1996;17:225-36.
  • 21. Soroceanu L, Manning TJ Jr, Sontheimer H. Modulation of glioma cell migration and invasion using Cl(-) and K(+) ion channel blockers. J Neurosci 1999;19:5942-54.
  • 22. Wang XT, Nagaba Y, Cross HS, Wrba F, Zhang L, Guggino SE. The mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and cancerous colon. Am J Pathol 2000;157:1549-62.
  • 23. Gray LS, Perez-Reyes E, Gomora JC, Haverstick DM, Shattock M, McLatchie L, et al. The role of voltage gated T-type Ca2+ channel isoforms in mediating "capacitative" Ca2+ entry in cancer cells. Cell Calcium 2004;36:489-97.
  • 24. Bubien JK, Keeton DA, Fuller CM, Gillespie GY, Reddy AT, Mapstone TB, et al. Malignant human gliomas express an amiloride-sensitive Na+ conductance. Am J Physiol 1999;276:1405-10.
  • 25. Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V. TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun 2004;322:1359-63.
  • 26. Wonderlin WF, Woodfork KA, Strobl JS. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 1995;165:177-85.
  • 27. Block ML, Moody WJ. A voltage-dependent chloride current linked to the cell cycle in ascidian embryos. Science 1990;247:1090-2.
  • 28. Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, et al. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol 2000;279:1540-9.
  • 29. Nilius B, Schwarz G, Droogmans G. Control of intracellular calcium by membrane potential in human melanoma cells. Am J Physiol 1993;265:1501-10.
  • 30. Pandiella A, Magni M, Lovisolo D, Meldolesi J. The effect of epidermal growth factor on membrane potential. Rapid hyperpolarization followed by persistent fluctuations. J Biol Chem 1989;264:12914-21.
  • 31. Rouzaire-Dubois B, Dubois JM. K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol 1998;510:93-102.
  • 32. Wonderlin WF, Strobl JS. Potassium channels, proliferation and G1 progression. J Membr Biol 1996;154:91-107.
  • 33. Marx A, Siara J, Rüdel R. Sodium and potassium channels in epithelial cells from thymus glands and thymomas of myasthenia gravis patients. Pflugers Arch 1991;417:537-9.
  • 34. Pancrazio JJ, Viglione MP, Tabbara IA, Kim YI. Voltage-dependent ion channels in small-cell lung cancer cells. Cancer Res 1989;49:5901-6.
  • 35. Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS, et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 1995;369:290-4.
  • 36. Diss JK, Archer SN, Hirano J, Fraser SP, Djamgoz MB. Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate 2001;48:165-78.
  • 37. Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett 2002;186:99-105.
  • 38. Diss JK, Stewart D, Pani F, Foster CS, Walker MM, Patel A, et al. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 2005;8:266-73.
  • 39. Fraser SP, Ding Y, Liu A, Foster CS, Djamgoz MB. Tetrodotoxin suppresses morphological enhancement of the metastatic MAT-LyLu rat prostate cancer cell line. Cell Tissue Res 1999;295:505-12.
  • 40. Fraser SP, Salvador V, Djamgoz MBA. Voltage-Gated Na+ channel activity contributes to rodent prostate cancer cell migration in vitro. Journal of Physiology 1998;513:131.
  • 41. Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltagegated Na+ channel activity. J Cell Sci 2001;114:2697-705.
  • 42. Mycielska ME, Djamgoz MB. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 2004;117:1631-9.
  • 43. Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 2003;1616:107-11.
  • 44. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005;11:5381-9.
  • 45. Chioni AM, Fraser SP, Pani F, Foran P, Wilkin GP, Diss JK, et al. A novel polyclonal antibody specific for the Na(v)1.5 voltage-gated Na(+) channel 'neonatal' splice form. J Neurosci Methods 2005;147:88-98.
  • 46. Onganer PU, Djamgoz MB. Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na(+) channel expression in vitro. J Membr Biol 2005;204:67-75.
  • 47. Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MB. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 2003;195:461-9.
  • 48. Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, et al. T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium 2008;43:49-58.
  • 49. Roger S, Potier M, Vandier C, Besson P, Le Guennec JY. Voltage-gated sodium channels: new targets in cancer therapy? Curr Pharm Des 2006;12:3681-95.
  • 50. Prevarskaya N, Zhang L, Barritt G. TRP channels in cancer. Biochim Biophys Acta. 2007;1772:937-46.
  • 51. Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, et al. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 2002;82:1755-64.
  • 52. Bolanz KA, Hediger MA, Landowski CP. The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther 2008;7:271-9.
  • 53. Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 2003;22:7858-61.
  • 54. Lehen'kyi V, Flourakis M, Skryma R, Prevarskaya N. TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 2007;26:7380-5.
  • 55. Ikuma M, Binder HJ, Geibel J. Role of apical H-K exchange and basolateral K channel in the regulation of intracellular pH in rat distal colon crypt cells. J Membr Biol 1998;166:205-12.
  • 56. Schuller HM. Neurotransmitter receptor-mediated signaling pathways as modulators of carcinogenesis. Prog Exp Tumor Res 2007;39:45-63.
  • 57. Plummer HK, Yu Q, Cakir Y, Schuller HM. Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines. BMC Cancer 2004;4:93.
  • 58. Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, et al. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 2003;3:297-302.
  • 59. Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen'kyi V, et al. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 2006;66:2038-47.
  • 60. Vanoverberghe K, Mariot P, Vanden Abeele F, Delcourt P, Parys JB, Prevarskaya N. Mechanisms of ATP-induced calcium signaling and growth arrest in human prostate cancer cells. Cell Calcium 2003;34:75-85.
  • 61. Schöfl C, Rössig L, Mader T, Börger J, Pötter E, von zur Mühlen A, et al. Impairment of ATP-induced Ca2+ -signalling in human thyroid cancer cells. Mol Cell Endocrinol 1997;133:33-9.
  • 62. Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, et al. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci U S A 2003;100:7803-7.
  • 63. Han X, Wang F, Yao W, Xing H, Weng D, Song X, et al. Heat shock proteins and p53 play a critical role in K+ channel-mediated tumor cell proliferation and apoptosis. Apoptosis 2007;12:1837-46.
  • 64. Hengartner MO. The biochemistry of apoptosis. The biochemistry of apoptosis. Nature 2000;407:770-6.
  • 65. Vanden Abeele F, Skryma R, Shuba Y, Van Coppenolle F, Slomianny C, Roudbaraki M, et al. Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 2002;1:169-79.
  • 66. Prevarskaya N, Skryma R, Shuba Y. Ca2+ homeostasis in apoptotic resistance of prostate cancer cells. Biochem Biophys Res Commun 2004;322:1326-35.
  • 67. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 2002;9:163-73.
  • 68. Burg ED, Remillard CV, Yuan JXJ. K+ channels in apoptosis. J Membr Biol 2006;209:3-20.
  • 69. Han Y, Shi Y, Han Z, Sun L, Fan D. Detection of potassium currents and regulation of multidrug resistance by potassium channels in human gastric cancer cells. Cell Biol Int 2007;31:741-7.
  • 70. McFerrin MB, Sontheimer H. A role for ion channels in glioma cell invasion. Neuron Glia Biol 2006;2:39-49.
  • 71. Lemonnier L, Shuba Y, Crepin A, Roudbaraki M, Slomianny C, Mauroy B, et al. Bcl-2-dependent modulation of swelling-activated Cl- current and ClC-3 expression in human prostate cancer epithelial cells. Cancer Res 2004;64:4841-8.
  • 72. Cheng G, Shao Z, Chaudhari B, Agrawal DK. Involvement of chloride channels in TGF-beta1-induced apoptosis of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007;293:1339-47.
  • 73. Cheung AL, Deng W. Telomere dysfunction, genome instability and cancer. Front Biosci 2008;13:2075-90.
  • 74. Liao CH, Hsiao YM, Sheu GT, Chang JT, Wang PH, Wu MF, et al. Nuclear translocation of telomerase reverse transcriptase and calcium signaling in repression of telomerase activity in human lung cancer cells by fungal immunomodulatory protein from Ganoderma tsugae. Biochem Pharmacol 2007;74:1541-54.
  • 75. Alfonso-De Matte MY, Moses-Soto H, Kruk PA. Calcium-mediated telomerase activity in ovarian epithelial cells. Arch Biochem Biophys 2002;399:239-44.
  • 76. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29:15-8.
  • 77. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005;69:4-10.
  • 78. Munaron L. Intracellular calcium, endothelial cells and angiogenesis. Recent Pat Anticancer Drug Discov 2006;1:105-19.
  • 79. Faehling M, Kroll J, Föhr KJ, Fellbrich G, Mayr U, Trischler G, et al. Essential role of calcium in vascular endothelial growth factor A-induced signaling: mechanism of the antiangiogenic effect of carboxyamidotriazole. FASEB J 2002;16:1805-7.
  • 80. Luzzi KJ, Varghese HJ, MacDonald IC, Schmidt EE, Kohn EC, Morris VL, et al. Inhibition of angiogenesis in liver metastases by carboxyamidotriazole (CAI). Angiogenesis 1998;2:373-9.
  • 81. Köhler R, Degenhardt C, Kühn M, Runkel N, Paul M, Hoyer J. Expression and function of endothelial Ca(2+)-activated K(+) channels in human mesenteric artery: A single-cell reverse transcriptase-polymerase chain reaction and electrophysiological study in situ. Circ Res 2000;87:496-503.
  • 82. Hu J, Yuan X, Ko MK, Yin D, Sacapano MR, Wang X, et al. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model. Mol Cancer 2007;6:22.
  • 83. Masi A, Becchetti A, Restano-Cassulini R, Polvani S, Hofmann G, Buccoliero AM, et al. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br J Cancer 2005;93:781-92.
  • 84. Diaz D, Delgadillo DM, Hernández-Gallegos E, Ramírez-Domínguez ME, Hinojosa LM, Ortiz CS, et al. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol 2007;210:469-78.
  • 85. Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, et al. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol 2007;39:774-86.
  • 86. Stringer BK, Cooper AG, Shepard SB. Overexpression of the G-protein inwardly rectifying potassium channel 1 (GIRK1) in primary breast carcinomas correlates with axillary lymph node metastasis. Cancer Res 2001;61:582-8.
  • 87. Potier M, Joulin V, Roger S, Besson P, Jourdan ML, Leguennec JY, et al. Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther 2006;5:2946-53.
  • 88. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H, et al. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 2004;64:606-11.
  • 89. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H. Calcium flickers steer cell migration. Nature 2009;457:901-5.
  • 90. Waning J, Vriens J, Owsianik G, Stüwe L, Mally S, Fabian A, et al. A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 2007;42:17-25.
  • 91. Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, et al. Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 2009;23:2425-37.
  • 92. Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 2009;15:124-34.
  • 93. Jensen BS, Strobaek D, Olesen SP, Christophersen P. The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2001;2:401-22.
  • 94. Munaron L, Antoniotti S, Fiorio Pla A, Lovisolo D. Blocking Ca2+entry: a way to control cell proliferation. Curr Med Chem 2004;11:1533-43.
  • 95. El-Kholy W, Macdonald PE, Lin JH, Wang J, Fox JM, Light PE, et al. The phosphatidylinositol 3-kinase inhibitor LY294002 potently blocks K(V) currents via a direct mechanism. FASEB J 2003;17:720-2.
  • 96. Conti M. Targeting K+ channels for cancer therapy. J Exp Ther Oncol 2004;4:161-6.
  • 97. Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V. TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun. 2004;322:1359-63.
  • 98. Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 2003;22:7858-61.
  • 99. Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 1998;58:1515-20.
  • 100. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70.
  • 101. Erdogan MA, Ozpolat B. Abstract 514: Targeting of Voltage-gated sodium channel NaV1.5 inhibits cell proliferation and colony formation in breast and ovarian cancer cells. Cancer Research 2013;73:514.
  • 102. Erdogan MA, Ozpolat B. Targeting of NaV1.5 channel in metastatic breast cancer models in vitro and in vivo mice as a novel therapy. European Journal of Cancer 2017;72(Suppl 1):S43.
Primary Language tr
Subjects Health Care Sciences and Services
Journal Section Review
Authors

Author: Mümin Alper Erdoğan (Primary Author)

Author: Oytun Erbaş

Dates

Publication Date : April 18, 2018

Bibtex @review { ibufntd448941, journal = {İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi}, issn = {2149-4401}, eissn = {2547-9466}, address = {}, publisher = {Bayçınar Tıbbi Yayıncılık ve Reklam Hiz. Tic. Ltd. Şti.}, year = {2018}, volume = {4}, pages = {49 - 62}, doi = {}, title = {İyon kanalları ve kanser}, key = {cite}, author = {Erdoğan, Mümin Alper and Erbaş, Oytun} }
APA Erdoğan, M , Erbaş, O . (2018). İyon kanalları ve kanser . İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi , 4 (1) , 49-62 . Retrieved from https://dergipark.org.tr/en/pub/ibufntd/issue/38652/448941
MLA Erdoğan, M , Erbaş, O . "İyon kanalları ve kanser" . İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 4 (2018 ): 49-62 <https://dergipark.org.tr/en/pub/ibufntd/issue/38652/448941>
Chicago Erdoğan, M , Erbaş, O . "İyon kanalları ve kanser". İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 4 (2018 ): 49-62
RIS TY - JOUR T1 - İyon kanalları ve kanser AU - Mümin Alper Erdoğan , Oytun Erbaş Y1 - 2018 PY - 2018 N1 - DO - T2 - İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi JF - Journal JO - JOR SP - 49 EP - 62 VL - 4 IS - 1 SN - 2149-4401-2547-9466 M3 - UR - Y2 - 2020 ER -
EndNote %0 İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi İyon kanalları ve kanser %A Mümin Alper Erdoğan , Oytun Erbaş %T İyon kanalları ve kanser %D 2018 %J İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi %P 2149-4401-2547-9466 %V 4 %N 1 %R %U
ISNAD Erdoğan, Mümin Alper , Erbaş, Oytun . "İyon kanalları ve kanser". İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 4 / 1 (April 2018): 49-62 .
AMA Erdoğan M , Erbaş O . İyon kanalları ve kanser. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 2018; 4(1): 49-62.
Vancouver Erdoğan M , Erbaş O . İyon kanalları ve kanser. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 2018; 4(1): 49-62.
IEEE M. Erdoğan and O. Erbaş , "İyon kanalları ve kanser", İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, vol. 4, no. 1, pp. 49-62, Apr. 2018