Year 2015, Volume 1 , Issue 1, Pages 52 - 57 2015-08-18

Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model
Nörogelişimsel hastalıklarda yeni nesil dizilemenin klinik kullanımı: Model olarak sendromik olmayan zeka geriliği

Ahmet Okay ÇAĞLAYAN [1]


Intellectual disability (ID) refers to a diverse group of disorders with marked heterogeneity in both clinical presentation and genetic etiology. Some cases of ID are associated with distinctive clinical findings that can lead to specific clinical and molecular diagnoses. However, sporadic cases of ID also occur in which the molecular pathogenesis cannot be identified via clinical diagnosis, and the genetic etiology is often unknown. New genomic technologies such as whole-exome sequencing, in which selective sequencing of all protein-coding genomic regions is performed, have proved to be the most efficient and cost-effective approach for identifying disease-causing variants in neurodevelopmental disorders, even in small nuclear families. Successful gene discovery efforts will lead to an improved understanding of the cellular and molecular mechanisms underpinning cases of individuals diagnosed with neurodevelopmental disorders, will inform screening programs and will promote the development of novel and more effective pharmacotherapies of personalized approaches to medical management.

Keywords: Intellectual disability; next-generation sequencing; novel gene identification.

Zeka geriliği hem klinik hem de genetik etyoloji olarak çeşitlilik gösteren geniş bir hastalık grubunu içerir. Zeka geriliği olan bazı hastalar spesifik klinik ve moleküler tanı konulmasına yardımcı olabilecek hastalığa özgü klinik bulgular gösterir. Bu tür özel klinik bulgular ile birlikte seyretmeyen zeka geriliğinde ise moleküler bozukluk klinik tanı ile ayırt edilemez ve genetik etyoloji sıklıkla bilinmemektedir. Tüm ekzom dizileme gibi genomun protein kodlayan tüm bölgelerinin dizilenmesini sağlayan yeni nesil genomik teknolojiler, nörogelişimsel hastalıklarda, çekirdek ailelerde bile hastalık nedeni olan mutasyonların bulunmasında en verimli ve uygun maliyetli yöntem olduklarını kanıtlamışlardır. Başarılı gen keşfi çalışmaları nörogelişimsel hastalıklı bireylerde altta yatan hücresel ve moleküler mekanizmaların anlaşılmasına yardımcı olacak, tarama programlarına bilgi aktaracak ve hastaların tıbbi bakımlarında hastaya özgü yeni ve daha etkili ilaç tedavilerine olanak sağlayacaktır
  • Association AP. Disorders usually first diagnosed in infancy, childhood, or adolescence. In: DSMIV, diagnostic criteria. Washington: WA: American Psychiatric Association; 1994. p. 39-46.
  • Leonard H, Wen X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev 2002;8:117-34.
  • Roeleveld N, Zielhuis GA, Gabreëls F. The prevalence of mental retardation: a critical review of recent literature. Dev Med Child Neurol 1997;39:125-32.
  • Salvador-Carulla L, Bertelli M. 'Mental retardation' or 'intellectual disability': time for a conceptual change. Psychopathology 2008;41:10-6.
  • Leonard H, Wen X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev 2002;8:117-34.
  • Salvador-Carulla L, Reed GM, Vaez-Azizi LM, Cooper SA, Martinez-Leal R, Bertelli M, et al. Intellectual developmental disorders: towards a new name, definition and framework for “mental retardation/ intellectual disability” in ICD-11. World Psychiatry 2011;10:175-80.
  • Roeleveld N, Zielhuis GA, Gabreëls F. The prevalence of mental retardation: a critical review of recent literature. Dev Med Child Neurol 1997;39:125-32.
  • Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta- analysis of population-based studies. Res Dev Disabil 2011;32:419-36.
  • Winnepenninckx B, Rooms L, Kooy RF. Mental retardation: A review of the genetic causes. Brit J Dev Disabil 2003;49:29-44.
  • Picker JD, Walsh CA. New innovations: therapeutic opportunities for intellectual disabilities. Ann Neurol 2013;74:382-90.
  • Centers for Disease Control and Prevention (CDC). Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment-- United States, 2003. MMWR Morb Mortal Wkly Rep 2004;53:57-9.
  • Polder JJ, Meerding WJ, Bonneux L, van der Maas PJ. Healthcare costs of intellectual disability in the Netherlands: a cost-of-illness perspective. J Intellect Disabil Res 2002;46:168-78.
  • Schwartz C, Tsumi A. Parental involvement in the residential care of persons with intellectual disability: The impact of parents' and residents’ characteristics and the process of relocation. J Appl Res Intellect 2003;16:285-93.
  • Madrigal I, Alvarez-Mora MI, Karlberg O, Rodríguez- Revenga L, Elurbe DM, Rabionet R, et al. Efficient application of next-generation sequencing for the diagnosis of rare genetic syndromes. J Clin Pathol 2014;67:1099-103.
  • Kaufman L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2010;2:182-209.
  • Shashi V, McConkie-Rosell A, Rosell B, Schoch
  • K, Vellore K, McDonald M, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 2014;16:176-82.
  • Karam SM, Riegel M, Segal SL, Félix TM, Barros AJ, Santos IS, et al. Genetic causes of intellectual disability in a birth cohort: A population-based study. Am J Med Genet A 2015;167:1204-14.
  • Hunter AG. Outcome of the routine assessment of patients with mental retardation in a genetics clinic. Am J Med Genet 2000;90:60-8.
  • Chelly J, Khelfaoui M, Francis F, Chérif B, Bienvenu T. Genetics and pathophysiology of mental retardation. Eur J Hum Genet 2006;14:701-13.
  • Moeschler JB, Shevell M. Clinical genetic evaluation of the child with mental retardation or developmental delays. Pediatrics 2006;117:2304-16.
  • McLaren J, Bryson SE. Review of recent
  • epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. Am J Ment Retard 1987;92:243-54. Ropers HH. Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 2010;11:161-87.
  • McLaren J, Bryson SE. Review of recent
  • epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. Am J Ment Retard 1987;92:243-54.
  • Mefford HC, Batshaw ML, Hoffman EP. Genomics, intellectual disability, and autism. N Engl J Med
  • Rauch A, Hoyer J, Guth S, Zweier C, Kraus
  • C, Becker C, et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A 2006;140:2063-74.
  • Zahir F, Friedman JM. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility. Clin Genet 2007;72:271-87.
  • Koolen DA, Pfundt R, de Leeuw N, Hehir-Kwa JY, Nillesen WM, Neefs I, et al. Genomic microarrays in mental retardation: a practical workflow for diagnostic applications. Hum Mutat 2009;30:283-92.
  • Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol 2013;17:589-99.
  • Siggberg L, Ala-Mello S, Jaakkola E, Kuusinen E, Schuit R, Kohlhase J, et al. Array CGH in molecular diagnosis of mental retardation - A study of 150 Finnish patients. Am J Med Genet A 2010;152:1398-410.
  • Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011;43:838-46.
  • Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010;86:749-64.
  • Hochstenbach R, van Binsbergen E, Engelen J,
  • Nieuwint A, Polstra A, Poddighe P, et al. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet 2009;52:161-9.
  • Lubs HA, Stevenson RE, Schwartz CE. Fragile X and X-linked intellectual disability: four decades of discovery. Am J Hum Genet 2012;90:579-90.
  • Kleefstra T, Schenck A, Kramer JM, van Bokhoven H. The genetics of cognitive epigenetics. Neuropharmacology 2014;80:83-94.
  • Hamdan FF, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, Higashi K, et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 2011;88:306-16.
  • Sisodiya S. A de novo paradigm for mental retardation. J Med Genet 2011;48:S31.
  • Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, et al. A de novo paradigm for mental retardation. Nat Genet 2010;42:1109-12.
  • Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012;380:1674-82.
  • de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012;367:1921-9.
  • Hamdan FF, Srour M, Capo-Chichi JM, Daoud
  • H, Nassif C, Patry L, et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet 2014;10:1004772
  • Schuurs-Hoeijmakers JH, Vulto-van Silfhout AT, Vissers LE, van de Vondervoort II, van Bon BW, de Ligt J, et al. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J Med Genet 2013;50:802-11.
  • Bittles A. Consanguinity and its relevance to clinical genetics. Clin Genet 2001;60:89-98.
  • Romeo G, Bittles AH. Consanguinity in the
  • contemporary world. Hum Hered 2014;77:6-9.
  • Alper OM, Erengin H, Manguo¤lu AE, Bilgen T, Cetin Z, Dedeo¤lu N, et al. Consanguineous marriages in the province of Antalya, Turkey. Ann Genet 2004;47:129-38.
  • Erdem Y, Teken F. Genetic screening services provided in Turkey. J Genet Couns 2013;22:858-64.
  • Tunçbilek E, Ozgüç M. Application of medical genetics in Turkey. Turk J Pediatr 2007;49:353-9.
  • Hamamy H, Antonarakis SE, Cavalli-Sforza LL, Temtamy S, Romeo G, Kate LP, et al. Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report. Genet Med 2011;13:841-7.
  • Molinari F, Rio M, Meskenaite V, Encha-Razavi
  • F, Augé J, Bacq D, et al. Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science 2002;298:1779-81.
  • Higgins JJ, Pucilowska J, Lombardi RQ, Rooney JP. A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 2004;63:1927-31.
  • Basel-Vanagaite L, Attia R, Yahav M, Ferland RJ, Anteki L, Walsh CA, et al. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J Med Genet 2006;43:203-10.
  • Motazacker MM, Rost BR, Hucho T, Garshasbi M, Kahrizi K, Ullmann R, et al. A defect in the ionotropic glutamate receptor 6 gene (GRIK2) is associated with autosomal recessive mental retardation. Am J Hum Genet 2007;81:792-8.
  • Garshasbi M, Hadavi V, Habibi H, Kahrizi K,
  • Kariminejad R, Behjati F, et al. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am J Hum Genet 2008;82:1158-64.
  • Molinari F, Foulquier F, Tarpey PS, Morelle W, Boissel S, Teague J, et al. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet 2008;82:1150-7.
  • Mir A, Kaufman L, Noor A, Motazacker MM,
  • Jamil T, Azam M, et al. Identification of mutations in TRAPPC9, which encodes the NIK- and IKK- beta-binding protein, in nonsyndromic autosomal- recessive mental retardation. Am J Hum Genet 2009;85:909-15.
  • Philippe O, Rio M, Carioux A, Plaza JM, Guigue P, Molinari F, et al. Combination of linkage mapping and microarray-expression analysis identifies NF-kappaB signaling defect as a cause of autosomal-recessive mental retardation. Am J Hum Genet 2009;85:903-8.
  • GH, Mahajnah M, Hill AD, Basel-Vanagaite L, Gleason D, Hill RS, et al. A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am J Hum Genet 2009;85:897-902.
  • Abou Jamra R, Wohlfart S, Zweier M, Uebe S, Priebe L, Ekici A, et al. Homozygosity mapping in 64 Syrian consanguineous families with non-specific intellectual disability reveals 11 novel loci and high heterogeneity. Eur J Hum Genet 2011;19:1161-6.
  • Ng SB, Bigham AW, Buckingham KJ, Hannibal
  • MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010;42:790-3.
  • Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 2010;42:30-5.
  • Bilgüvar K, Oztürk AK, Louvi A, Kwan KY,
  • Choi M, Tatli B, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 2010;467:207-10.
  • Bonnefond A, Durand E, Sand O, De Graeve F, Gallina S, Busiah K, et al. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS One 2010;5:13630.
  • Bell CJ, Dinwiddie DL, Miller NA, Hateley SL,
  • Ganusova EE, Mudge J, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 2011;3:654.
  • Çalıkan M, Chong JX, Uricchio L, Anderson R, Chen P, Sougnez C, et al. Exome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13. Hum Mol Genet 2011;20:1285-9.
  • Rafiq MA, Kuss AW, Puettmann L, Noor A, Ramiah A, Ali G, et al. Mutations in the alpha 1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability. Am J Hum Genet 2011;89:176-82.
  • Najmabadi H, Hu H, Garshasbi M, Zemojtel T,
  • Abedini SS, Chen W, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011;478:57-63.
  • Hu H, Eggers K, Chen W, Garshasbi M, Motazacker MM, Wrogemann K, et al. ST3GAL3 mutations impair the development of higher cognitive functions. Am J Hum Genet 2011;89:407-14.
  • de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012;367:1921-9.
  • Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L, et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 2010;362:1181-91.
  • Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014;511:344-7.
  • Foo JN, Liu JJ, Tan EK. Whole-genome and whole- exome sequencing in neurological diseases. Nat Rev Neurol 2012;8:508-17.
  • Bilguvar K, Tyagi NK, Ozkara C, Tuysuz B, Bakircioglu M, Choi M, et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early- onset progressive neurodegeneration. Proc Natl Acad Sci U S A 2013;110:3489-94.
  • Schaffer AE, Eggens VR, Caglayan AO, Reuter
  • MS, Scott E, Coufal NG, et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 2014;157:651-63.
  • Mishra-Gorur K, Ça¤layan AO, Schaffer AE, Chabu C, Henegariu O, Vonhoff F, et al. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron 2014;84:1226-39.
  • Radmanesh F, Caglayan AO, Silhavy JL, Yilmaz C, Cantagrel V, Omar T, et al. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am J Hum Genet 2013;92:468-74.
  • Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science
Primary Language en
Journal Section Review
Authors

Author: Ahmet Okay ÇAĞLAYAN

Dates

Publication Date : August 18, 2015

Bibtex @ { ibufntd103954, journal = {İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi}, issn = {2149-4401}, eissn = {2547-9466}, address = {}, publisher = {Bayçınar Tıbbi Yayıncılık ve Reklam Hiz. Tic. Ltd. Şti.}, year = {2015}, volume = {1}, pages = {52 - 57}, doi = {10.5606/fng.btd.2015.011}, title = {Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model}, key = {cite}, author = {Çağlayan, Ahmet Okay} }
APA Çağlayan, A . (2015). Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model . İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi , 1 (1) , 52-57 . DOI: 10.5606/fng.btd.2015.011
MLA Çağlayan, A . "Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model" . İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 1 (2015 ): 52-57 <https://dergipark.org.tr/en/pub/ibufntd/issue/7896/103954>
Chicago Çağlayan, A . "Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model". İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 1 (2015 ): 52-57
RIS TY - JOUR T1 - Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model AU - Ahmet Okay Çağlayan Y1 - 2015 PY - 2015 N1 - doi: 10.5606/fng.btd.2015.011 DO - 10.5606/fng.btd.2015.011 T2 - İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi JF - Journal JO - JOR SP - 52 EP - 57 VL - 1 IS - 1 SN - 2149-4401-2547-9466 M3 - doi: 10.5606/fng.btd.2015.011 UR - https://doi.org/10.5606/fng.btd.2015.011 Y2 - 2020 ER -
EndNote %0 İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model %A Ahmet Okay Çağlayan %T Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model %D 2015 %J İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi %P 2149-4401-2547-9466 %V 1 %N 1 %R doi: 10.5606/fng.btd.2015.011 %U 10.5606/fng.btd.2015.011
ISNAD Çağlayan, Ahmet Okay . "Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model". İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 1 / 1 (August 2015): 52-57 . https://doi.org/10.5606/fng.btd.2015.011
AMA Çağlayan A . Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 2015; 1(1): 52-57.
Vancouver Çağlayan A . Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 2015; 1(1): 52-57.
IEEE A. Çağlayan , "Clinical utility of next-generation sequencing in neurodevelopmental disorders: non-syndromic intellectual disability as a model", İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, vol. 1, no. 1, pp. 52-57, Aug. 2015, doi:10.5606/fng.btd.2015.011