Research Article
BibTex RIS Cite

Mangan süperoksit dismutaz Ala16Val gen polimorfizmlerinin koroner arter olaylarında koruyucu rollerinin araştırılması

Year 2015, Volume: 1 Issue: 3, 134 - 144, 07.12.2015

Abstract

Amaç: Araştırmamızın amacı, mangan süperoksit dismutaz (MnSOD) genine ait Ala16Val polimorfizminin koroner arter hastalığı (KAH) olan kişilerdeki genotip sıklıklarını belirlemek ve genotip-kalp damar hastalığı ve genotip-biyokimyasal parametreler ve serum MnSOD aktivitesi ile etkileşimin değerlendirilmesidir.

Gereç ve yöntemler: MnSOD geni Ala16Val genotipleri kantitatif polimeraz zincir reaksiyonu yöntemi ile saptandı. Serum MnSOD aktivitesi ELİSA yöntemi ile belirlendi.

Bulgular: MnSOD geni Ala16Val polimorfizmi için genotip sıklıkları KAH grubunda C/C (Homozigot yabanıl tip), C/T (Heterozigot), T/T (Homozigot polimorfik tip) genotipler için sırasıyla %20.9, %41.9, %37.2 ve KAH olmayan grupta %15.5, %51.7, %32.8 olarak tespit edildi. Tüm çalışma grubundaki mitokondriyal MnSOD aktiviteleri, MnSOD geni Ala16Val genotiplerine göre karşılaştırıldığında CC genotip taşıyıcılarının en yüksek, TT genotip taşıyıcılarının en düşük MnSOD aktivitesine sahip olduğu belirlendi. Koroner arter hastalığı bulunmayan hastalarda MnSOD Ala16Val polimorfizminin yağsız vücut kütlesi (p=0.01) ve yağ kütlesi (p=0.05) üzerine anlamlı etkileri olduğu saptandı. Ala16Val polimorfizminin heterozigot genotipe sahip KAH hastalarında yağdan zengin gıdalarla beslenme alışkanlıkları diğer genotiplere kıyasla daha düşük iken, homozigot polimorfik genotipe sahip KAH hastalarının diğer genotiplere kıyasla proteinden fakir beslenme alışkanlıklarını benimsedikleri görüldü.

Sonuç: Tüm çalışma grubu değerlendirildiğinde, MnSOD Ala16Val genotipleri ile beslenme alışkanlıkları arasında anlamlı bir ilişki bulunurken yağsız vücut kütlesi üzerinde etkili bulunmamıştır.

References

  • Ross R. The pathogenesis of atherosclerosis. In: Braunwald E, editor. Heart Disease: A Textbook of Cardiovascular Medicine. 5th ed. Philadelphia: Saunders; 1997. p. 1105-25.
  • Ramos KS, Partridge CR, Teneng I. Genetic and molecular mechanisms of chemical atherogenesis. Mutat Res 2007;621:18-30.
  • Thom TJ, Kannel WB, Silbershatz H, D’Agostino RB. Incidence, prevalence, and mortality of cardiovascular diseases in the United States. In: Alexander RW, Schlant RC, Fuster V, editors. Hurst’s the Heart. 9th ed. New York: McGraw-Hill; 1998. p. 3-17.
  • American Heart Association. Heart diseases and stroke statistics-2004 update. Dallas: American Heart association; 2004.
  • Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001;104:503-16.
  • Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003;91:7-11.
  • Heistad DD. Oxidative stress and vascular disease: 2005 Duff lecture. Arterioscler Thromb Vasc Biol 2006;26:689-95.
  • Aral H. Türkmen S. Oksidatif stres ve hastalıklarla ilikisi. Folia 2002;4:1-5.
  • Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001;54:176-86.
  • Steinberg D. At last, direct evidence that lipoxygenases play a role in atherogenesis. J Clin Invest 1999;103:1487-8.
  • Hardwick SJ, Hegyi L, Clare K, Law NS, Carpenter KL, Mitchinson MJ, et al. Apoptosis in human monocyte-macrophages exposed to oxidized low density lipoprotein. J Pathol 1996;179:294-302.
  • Rössig L, Dimmeler S, Zeiher AM. Apoptosis in the vascular wall and atherosclerosis. Basic Res Cardiol 2001;96:11-22.
  • Björkerud S, Björkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996;149:367-80.
  • Chisolm GM, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 2000;28:1815-26.
  • Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003;91:7-11.
  • Gurr M, Saris T, Jequier E, Zock P, Diplock A, Asp N, et al. Healthy lifestyles: Nutrition and physical activity. Washington, DC: International Life Science Institute, (ILSI Europe concise monograph series). 1998. p. 59.
  • West N, Guzik T, Black E, Channon K. Enhanced superoxide production in experimental venous bypass graft intimal hyperplasia: role of NAD(P)H oxidase. Arterioscler Thromb Vasc Biol 2001;21:189-94.
  • Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 1991;88:10045-8.
  • Schnackenberg CG, Welch WJ, Wilcox CS. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 1998;32:59-64.
  • Qin Z, Reszka KJ, Fukai T, Weintraub NL. Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Transl Res 2008;151:68-78.
  • Borgstahl GE, Parge HE, Hickey MJ, Johnson MJ, Boissinot M, Hallewell RA, et al. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry 1996;35:4287-97.
  • Wispé JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA. Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochim Biophys Acta 1989;994:30-6.
  • Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease. Biochem Biophys Res Commun 1996;226:561-5.
  • Barra D, Schinina ME, Simmaco M, Bannister JV, Bannister WH, Rotilio G, et al. The primary structure of human liver manganese superoxide dismutase. J Biol Chem 1984;259:12595-601.
  • Elsakka NE, Webster NR, Galley HF. Polymorphism in the manganese superoxide dismutase gene. Free Radic Res 2007;41:770-8.
  • St Clair D. Manganese superoxide dismutase: genetic variation and regulation. J Nutr 2004;134:3190-3191.
  • Vallance P. Vascular endothelium, its physiology and pathophysiology. In: Wetherall DJ, Ledingham JGG, Warrell DA, editors. Oxford Textbook of Medicine. Oxford: Oxford University Press; 1995. p. 2295-300.
  • Kinscherf R, Claus R, Wagner M, Gehrke C, Kamencic H, Hou D, et al. Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J 1998;12:461-7.
  • Shatrov VA, Brüne B. Induced expression of manganese superoxide dismutase by non-toxic concentrations of oxidized low-density lipoprotein (oxLDL) protects against oxLDL-mediated cytotoxicity. Biochem J 2003;374:505-11.
  • Ohashi M, Runge MS, Faraci FM, Heistad DD. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2006;26:2331-6.
  • Fang X, Weintraub NL, Rios CD, Chappell DA, Zwacka RM, Engelhardt JF, et al. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells. Circ Res 1998;82:1289-97.
  • Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci U S A 1996;93:4471-3.
  • Hiroi S, Harada H, Nishi H, Satoh M, Nagai R, Kimura A. Polymorphisms in the SOD2 and HLA- DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem Biophys Res Commun 1999;261:332-9.
  • Zejnilojic J. Akciğer kanserli hastalarda mangan süperoksit dismutaz (MNSOD) gen polimorfizminin incelenmesi [Yüksek Lisans Tezi]. İstanbul: İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü; 2007.
  • Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009;47:344-56.
  • Riobó NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, et al. Nitric oxide inhibits mitochondrial NADH: ubiquinon reducase activity through peroxynitrite formation. Biochemical Journal 2001;359:139-45.
  • Gardner PR, Nguyen DD, White CW. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci U S A 1994;91:12248-52.
  • Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002;76:5-56.
  • High Pure PCR Template Preparation Kit, Roche protokolü. Available from: http://www.roche-applied- science.com
  • Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215.
  • Chen H, Yu M, Li M, Zhao R, Zhu Q, Zhou W, et al. Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Molecular and Cellular Biochemistry 2012;363:85-91.
  • Yang MP, Ye LX, Qiu H, Deng MD, Wang Q, Li QL, et al. Association between mangane superokside dismutase 9Ala/Val genetic polymorphism and coronary heart disease. Wu Han Da Xue Xue Bao 2008;29:775–9.
  • Tian C, Liu T, Fang S, Du X, Jia C. Association of C47T polymorphism in SOD2 gene with coronary artery disease: a case-control study and a meta- analysis. Mol Biol Rep 2012;39:5269-76.
  • Gottlieb MG, Schwanke CH, Santos AF, Jobim PF, Müssel DP, da Cruz IB. Association among oxidized LDL levels, MnSOD, apolipoprotein E polymorphisms, and cardiovascular risk factors in a south Brazilian region population. Genet Mol Res 2005;4:691-703.
  • Landmesser U, Merten R, Spiekermann S, Büttner K, Drexler H, Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 2000;101:2264-70.
  • Fujimoto H, Taguchi J, Imai Y, Ayabe S, Hashimoto H, Kobayashi H, et al. Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J 2008;29:1267-74.
  • Isbir S, Ergen A, Yilmaz H, Tekeli A, Arsan S. Effect of Ala16Val genetic polymorphism of MnSOD on antioxidant capacity and inflammatory response in open heart surgery. In Vivo 2008;22:147-51.
  • Möllsten A, Jorsal A, Lajer M, Vionnet N, Tarnow L. The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in type 1 diabetes. Diabetologia 2009;52:2590-3.
  • Montano MA, Barrio Lera JP, Gottlieb MG, Schwanke CH, da Rocha MI, Manica-Cattani MF, et al. Association between manganese superoxide dismutase (MnSOD) gene polymorphism and elderly obesity. Mol Cell Biochem 2009;328:33-40.
Year 2015, Volume: 1 Issue: 3, 134 - 144, 07.12.2015

Abstract

References

  • Ross R. The pathogenesis of atherosclerosis. In: Braunwald E, editor. Heart Disease: A Textbook of Cardiovascular Medicine. 5th ed. Philadelphia: Saunders; 1997. p. 1105-25.
  • Ramos KS, Partridge CR, Teneng I. Genetic and molecular mechanisms of chemical atherogenesis. Mutat Res 2007;621:18-30.
  • Thom TJ, Kannel WB, Silbershatz H, D’Agostino RB. Incidence, prevalence, and mortality of cardiovascular diseases in the United States. In: Alexander RW, Schlant RC, Fuster V, editors. Hurst’s the Heart. 9th ed. New York: McGraw-Hill; 1998. p. 3-17.
  • American Heart Association. Heart diseases and stroke statistics-2004 update. Dallas: American Heart association; 2004.
  • Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001;104:503-16.
  • Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003;91:7-11.
  • Heistad DD. Oxidative stress and vascular disease: 2005 Duff lecture. Arterioscler Thromb Vasc Biol 2006;26:689-95.
  • Aral H. Türkmen S. Oksidatif stres ve hastalıklarla ilikisi. Folia 2002;4:1-5.
  • Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001;54:176-86.
  • Steinberg D. At last, direct evidence that lipoxygenases play a role in atherogenesis. J Clin Invest 1999;103:1487-8.
  • Hardwick SJ, Hegyi L, Clare K, Law NS, Carpenter KL, Mitchinson MJ, et al. Apoptosis in human monocyte-macrophages exposed to oxidized low density lipoprotein. J Pathol 1996;179:294-302.
  • Rössig L, Dimmeler S, Zeiher AM. Apoptosis in the vascular wall and atherosclerosis. Basic Res Cardiol 2001;96:11-22.
  • Björkerud S, Björkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996;149:367-80.
  • Chisolm GM, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 2000;28:1815-26.
  • Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003;91:7-11.
  • Gurr M, Saris T, Jequier E, Zock P, Diplock A, Asp N, et al. Healthy lifestyles: Nutrition and physical activity. Washington, DC: International Life Science Institute, (ILSI Europe concise monograph series). 1998. p. 59.
  • West N, Guzik T, Black E, Channon K. Enhanced superoxide production in experimental venous bypass graft intimal hyperplasia: role of NAD(P)H oxidase. Arterioscler Thromb Vasc Biol 2001;21:189-94.
  • Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 1991;88:10045-8.
  • Schnackenberg CG, Welch WJ, Wilcox CS. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 1998;32:59-64.
  • Qin Z, Reszka KJ, Fukai T, Weintraub NL. Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Transl Res 2008;151:68-78.
  • Borgstahl GE, Parge HE, Hickey MJ, Johnson MJ, Boissinot M, Hallewell RA, et al. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry 1996;35:4287-97.
  • Wispé JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA. Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochim Biophys Acta 1989;994:30-6.
  • Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease. Biochem Biophys Res Commun 1996;226:561-5.
  • Barra D, Schinina ME, Simmaco M, Bannister JV, Bannister WH, Rotilio G, et al. The primary structure of human liver manganese superoxide dismutase. J Biol Chem 1984;259:12595-601.
  • Elsakka NE, Webster NR, Galley HF. Polymorphism in the manganese superoxide dismutase gene. Free Radic Res 2007;41:770-8.
  • St Clair D. Manganese superoxide dismutase: genetic variation and regulation. J Nutr 2004;134:3190-3191.
  • Vallance P. Vascular endothelium, its physiology and pathophysiology. In: Wetherall DJ, Ledingham JGG, Warrell DA, editors. Oxford Textbook of Medicine. Oxford: Oxford University Press; 1995. p. 2295-300.
  • Kinscherf R, Claus R, Wagner M, Gehrke C, Kamencic H, Hou D, et al. Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J 1998;12:461-7.
  • Shatrov VA, Brüne B. Induced expression of manganese superoxide dismutase by non-toxic concentrations of oxidized low-density lipoprotein (oxLDL) protects against oxLDL-mediated cytotoxicity. Biochem J 2003;374:505-11.
  • Ohashi M, Runge MS, Faraci FM, Heistad DD. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2006;26:2331-6.
  • Fang X, Weintraub NL, Rios CD, Chappell DA, Zwacka RM, Engelhardt JF, et al. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells. Circ Res 1998;82:1289-97.
  • Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci U S A 1996;93:4471-3.
  • Hiroi S, Harada H, Nishi H, Satoh M, Nagai R, Kimura A. Polymorphisms in the SOD2 and HLA- DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem Biophys Res Commun 1999;261:332-9.
  • Zejnilojic J. Akciğer kanserli hastalarda mangan süperoksit dismutaz (MNSOD) gen polimorfizminin incelenmesi [Yüksek Lisans Tezi]. İstanbul: İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü; 2007.
  • Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009;47:344-56.
  • Riobó NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, et al. Nitric oxide inhibits mitochondrial NADH: ubiquinon reducase activity through peroxynitrite formation. Biochemical Journal 2001;359:139-45.
  • Gardner PR, Nguyen DD, White CW. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci U S A 1994;91:12248-52.
  • Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002;76:5-56.
  • High Pure PCR Template Preparation Kit, Roche protokolü. Available from: http://www.roche-applied- science.com
  • Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215.
  • Chen H, Yu M, Li M, Zhao R, Zhu Q, Zhou W, et al. Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Molecular and Cellular Biochemistry 2012;363:85-91.
  • Yang MP, Ye LX, Qiu H, Deng MD, Wang Q, Li QL, et al. Association between mangane superokside dismutase 9Ala/Val genetic polymorphism and coronary heart disease. Wu Han Da Xue Xue Bao 2008;29:775–9.
  • Tian C, Liu T, Fang S, Du X, Jia C. Association of C47T polymorphism in SOD2 gene with coronary artery disease: a case-control study and a meta- analysis. Mol Biol Rep 2012;39:5269-76.
  • Gottlieb MG, Schwanke CH, Santos AF, Jobim PF, Müssel DP, da Cruz IB. Association among oxidized LDL levels, MnSOD, apolipoprotein E polymorphisms, and cardiovascular risk factors in a south Brazilian region population. Genet Mol Res 2005;4:691-703.
  • Landmesser U, Merten R, Spiekermann S, Büttner K, Drexler H, Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 2000;101:2264-70.
  • Fujimoto H, Taguchi J, Imai Y, Ayabe S, Hashimoto H, Kobayashi H, et al. Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J 2008;29:1267-74.
  • Isbir S, Ergen A, Yilmaz H, Tekeli A, Arsan S. Effect of Ala16Val genetic polymorphism of MnSOD on antioxidant capacity and inflammatory response in open heart surgery. In Vivo 2008;22:147-51.
  • Möllsten A, Jorsal A, Lajer M, Vionnet N, Tarnow L. The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in type 1 diabetes. Diabetologia 2009;52:2590-3.
  • Montano MA, Barrio Lera JP, Gottlieb MG, Schwanke CH, da Rocha MI, Manica-Cattani MF, et al. Association between manganese superoxide dismutase (MnSOD) gene polymorphism and elderly obesity. Mol Cell Biochem 2009;328:33-40.
There are 49 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hale Atmaca This is me

Meliha Koldemir Gündüz This is me

Penbe Çağatay This is me

Mehtap Çevik This is me

Belgin Süsleyici Duman

Publication Date December 7, 2015
Published in Issue Year 2015 Volume: 1 Issue: 3

Cite

APA Atmaca, H., Koldemir Gündüz, M., Çağatay, P., Çevik, M., et al. (2015). Mangan süperoksit dismutaz Ala16Val gen polimorfizmlerinin koroner arter olaylarında koruyucu rollerinin araştırılması. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, 1(3), 134-144. https://doi.org/10.5606/fng.btd.2015.025
AMA Atmaca H, Koldemir Gündüz M, Çağatay P, Çevik M, Süsleyici Duman B. Mangan süperoksit dismutaz Ala16Val gen polimorfizmlerinin koroner arter olaylarında koruyucu rollerinin araştırılması. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. December 2015;1(3):134-144. doi:10.5606/fng.btd.2015.025
Chicago Atmaca, Hale, Meliha Koldemir Gündüz, Penbe Çağatay, Mehtap Çevik, and Belgin Süsleyici Duman. “Mangan süperoksit Dismutaz Ala16Val Gen Polimorfizmlerinin Koroner Arter olaylarında Koruyucu Rollerinin araştırılması”. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 1, no. 3 (December 2015): 134-44. https://doi.org/10.5606/fng.btd.2015.025.
EndNote Atmaca H, Koldemir Gündüz M, Çağatay P, Çevik M, Süsleyici Duman B (December 1, 2015) Mangan süperoksit dismutaz Ala16Val gen polimorfizmlerinin koroner arter olaylarında koruyucu rollerinin araştırılması. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 1 3 134–144.
IEEE H. Atmaca, M. Koldemir Gündüz, P. Çağatay, M. Çevik, and B. Süsleyici Duman, “Mangan süperoksit dismutaz Ala16Val gen polimorfizmlerinin koroner arter olaylarında koruyucu rollerinin araştırılması”, İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, vol. 1, no. 3, pp. 134–144, 2015, doi: 10.5606/fng.btd.2015.025.
ISNAD Atmaca, Hale et al. “Mangan süperoksit Dismutaz Ala16Val Gen Polimorfizmlerinin Koroner Arter olaylarında Koruyucu Rollerinin araştırılması”. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 1/3 (December 2015), 134-144. https://doi.org/10.5606/fng.btd.2015.025.
JAMA Atmaca H, Koldemir Gündüz M, Çağatay P, Çevik M, Süsleyici Duman B. Mangan süperoksit dismutaz Ala16Val gen polimorfizmlerinin koroner arter olaylarında koruyucu rollerinin araştırılması. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 2015;1:134–144.
MLA Atmaca, Hale et al. “Mangan süperoksit Dismutaz Ala16Val Gen Polimorfizmlerinin Koroner Arter olaylarında Koruyucu Rollerinin araştırılması”. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, vol. 1, no. 3, 2015, pp. 134-4, doi:10.5606/fng.btd.2015.025.
Vancouver Atmaca H, Koldemir Gündüz M, Çağatay P, Çevik M, Süsleyici Duman B. Mangan süperoksit dismutaz Ala16Val gen polimorfizmlerinin koroner arter olaylarında koruyucu rollerinin araştırılması. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 2015;1(3):134-4.