Research Article
BibTex RIS Cite

Determining The Sustainable Economic Level of Physical Losses in Drinking Water Networks: Case of Merzifon

Year 2022, Volume: 14 Issue: Özel Sayı, 289 - 314, 31.12.2022
https://doi.org/10.31198/idealkent.1099477

Abstract

The sustainable economic level was investigated in reducing physical water losses in drinking water networks in this study. All possible strategies follow the principle of diminishing efficiency to reduce physical water losses in drinking water networks. The incremental return decreases in terms of water saved as the expenditure increases on water loss reduction in the principle of diminishing efficiency. Water utilities need to estimate the economic level of water losses so that they can reduce water losses to the level where the cost of reducing water losses equals the value of water saved. In the case of Merzifon, it has been determined that the sustainable level of leakage is 4,5 % in the case of taking the loss and leakage measures based on the physical water loss and leakage amount of 2020 in the water network. Determining the cost of water is important in determining the level of sustainable economic loss and leakage in a water service supply region. It is important to consider the situation of water withdrawal above the regeneration rate of the water from the source and the resource cost incurred by the activities carried out for the protection of water resources on a basin basis in determining the value of water.

References

  • Aboelnga, H., Saidan, M., Al-Weshah, R., Sturm, M., Ribbe, L., and Frechen, F. B. (2018). Component analysis for optimal leakage management in Madaba, Jordan. Journal of Water Supply: Research and Technology—AQUA, 67(4), 384- 396.
  • AwwaRF (2007). American Water Works Association Research Foundation. Evaluating water loss and planning loss reduction strategies, report 91163.
  • DSİ (2012). Devlet Su İşleri 7. Bölge müdürlüğü. Merzifon etüt raporu. Samsun.
  • Commission of the European Communities. (2000). Towards a European research area: Communication from the commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions. Office for Official Publications of the European Communities.
  • Chung, S. H., Yu, M. J., Koo, J. Y., Lee, H. K., ve Koizumi, A. (2005). Applicability test of various performance indicators for water loss management in Korean Cities.
  • European Commission. (2013). Resource and economic efficiency of water distribution networks in the EU.
  • Fanner, P., Sturm, R., Thornton, J., Liemberger, R., Davis, S., ve Hoogerwerf, T. (2007). Leak management technologies. Awwa Research Foundation: Denver, CO, USA.
  • Firat, M., Yilmaz, S., Ateş, A., & Özdemir, Ö. (2021). Determination of economic leakage level with optimization algorithm in water distribution systems. Water Economics and Policy, 7(03), 2150014.
  • Hardeman, S. (2008). A cost-benefit analysis of leak detection and the potential of real water savings for New Mexico water systems.
  • İLBANK (2013). İller Bankası Anonim Şirketi. İçme suyu tesisleri etüt, fizibilite ve projelerinin hazırlanmasına ait teknik şartname.
  • İLBANK (2017). İller Bankası Anonim Şirketi. İller Bankası Anonim Şirketi Samsun Bölge Müdürlüğü. Ayancık (Sinop) içme suyu kesin projesi, Samsun.
  • İLBANK (2022). İller Bankası Anonim Şirketi. Yatırım ve Koordinasyon Daire Başkanlığı. 2020 yılı altyapı tesisleri birim fiyat cetvelleri, Ankara.
  • Kanakoudis, V. and Gonelas, K. 2014. Developing a methodology towards full cost recovery in urban water pipe networks, based on the “User Pays” principle. University of Thessaly, Civil Engineering Department, Pedion Areas, Volos, Greece.
  • Kanakoudis, V. and Muhammetoglu, H. 2014. Urban pipe networks management towards on‐revenue water reduction: Two case studies from Greece and Turkey. CLEAN–Soil, Air, Water, 42(7), 880-892.
  • Lambert, A. (2001). What do we know about pressure: Leakage relationships in distribution systems. In IWA Conf. n Systems approach to leakage control and water distribution system management.
  • Lenzi, C., Bragalli, C., Bolognesi, A., and Fortini, M. (2014). Infrastructure leakage index assessment in large water systems. Procedia Engineering, 70, 1017-1026.
  • Lim, E. (2015). Development of a leakage target setting approach for South Korea based on economic level of leakage. University of Exeter College of Engineering, Mathemetics and Physical Sciences Theses of Master of Philosopy in Engineering. United Kingdom.
  • Liemberger, R., and McKenzie, R. (2005). Accuracy limitations of the ILI: is it an appropriate indicator for developing countries. In Conference Proceedings, IWA Leakage 2005 Conference in Halifax, Nova Scotia, Canada.
  • Malm, A., Svensson, G., Røstum, J., and Axell, L. (2020). Sustainable economic level of leakage in Norway and Sweden–manual of practice. Water Practice and Technology.
  • Merzifon Belediyesi (2020). Su ve Kanalizasyon Müdürlüğü. Faaliyet raporları. Merzifon.
  • Moyer, E. E., Male, J. W., Moore, I. C., ve Hock, J. G. (1983). The economics off leak detection and repair—a case study. Journal‐American Water Works Association, 75(1), 28-34.
  • Ofwat, U. (2002). Leakage target, setting for water companies in England and Wales. Summary report, March.
  • Pearson, D. ve Trow, S. W. (2005). Calculating economic levels of leakage. In leakage 2005 conference proceedings (pp. 1-16).
  • Yılmaz, S., Fırat, M., Ateş, A., ve Özdemir, Ö. (2021). Aktif kaçak kontrolü uygulanarak ekonomik kaçak seviyesi ve altyapı kaçak indeks göstergesinin analizi. Journal of Pipeline Systems Engineering and Practice , 12 (4), 04021046.
  • Yilmaz, S., Firat, M., ATEŞ, A., ve Ozdemir, O. (2021). Defınıng the optımum pressure for actıve leakage control efficiency by considering economic criteria. Fresenius Environmental Bulletin, 30(7A).

İçme Suyu Şebekelerinde Fiziki Kayıpların Sürdürülebilir Ekonomik Seviyesinin Belirlenmesi: Merzifon Örneği

Year 2022, Volume: 14 Issue: Özel Sayı, 289 - 314, 31.12.2022
https://doi.org/10.31198/idealkent.1099477

Abstract

Bu çalışmada içme suyu şebekelerinde meydana gelen fiziki kayıplarının azaltılmasında sürdürülebilir ekonomik seviye araştırılmıştır. İçme suyu şebekelerinde fiziki kayıpları azaltmak için olası tüm stratejiler azalan verim prensibini takip etmektedir. Azalan verim prensibinde, fiziki kaybının azaltılmasına yapılan harcama ne kadar yüksekse, tasarruf edilen su açısından kademeli getiri o kadar düşük olur. Su idarelerinin fiziki kayıplarını, azaltma maliyetini tasarruf edilen suyun değerine eşit olduğu seviyeye indirebilmeleri için, fiziki kayıplarının ekonomik seviyesini tahmin etmeleri gerekmektedir. Merzifon örneğinde 2020 yılına ait fiziki kayıp miktarı esas alınarak su şebekesinde fiziki kayıpların önlenmesi durumunda sürdürülebilir fiziki kayıp seviyesinin %4,5 olduğu tespit edilmiştir. Bir su hizmeti sağlama bölgesinde suyun maliyetinin belirlenmesi sürdürülebilir ekonomik fiziki kayıp seviyesinin belirlenmesinde önemlidir. Suyun maliyetinin tespitinde suyun kaynağından yenilenme oranı üzerinde su çekilmesi durumu ve havza bazında su kaynaklarının korunması için yapılan faaliyetlerle oluşan kaynak maliyetinin göz önünde bulundurulması önem arz etmektedir.

References

  • Aboelnga, H., Saidan, M., Al-Weshah, R., Sturm, M., Ribbe, L., and Frechen, F. B. (2018). Component analysis for optimal leakage management in Madaba, Jordan. Journal of Water Supply: Research and Technology—AQUA, 67(4), 384- 396.
  • AwwaRF (2007). American Water Works Association Research Foundation. Evaluating water loss and planning loss reduction strategies, report 91163.
  • DSİ (2012). Devlet Su İşleri 7. Bölge müdürlüğü. Merzifon etüt raporu. Samsun.
  • Commission of the European Communities. (2000). Towards a European research area: Communication from the commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions. Office for Official Publications of the European Communities.
  • Chung, S. H., Yu, M. J., Koo, J. Y., Lee, H. K., ve Koizumi, A. (2005). Applicability test of various performance indicators for water loss management in Korean Cities.
  • European Commission. (2013). Resource and economic efficiency of water distribution networks in the EU.
  • Fanner, P., Sturm, R., Thornton, J., Liemberger, R., Davis, S., ve Hoogerwerf, T. (2007). Leak management technologies. Awwa Research Foundation: Denver, CO, USA.
  • Firat, M., Yilmaz, S., Ateş, A., & Özdemir, Ö. (2021). Determination of economic leakage level with optimization algorithm in water distribution systems. Water Economics and Policy, 7(03), 2150014.
  • Hardeman, S. (2008). A cost-benefit analysis of leak detection and the potential of real water savings for New Mexico water systems.
  • İLBANK (2013). İller Bankası Anonim Şirketi. İçme suyu tesisleri etüt, fizibilite ve projelerinin hazırlanmasına ait teknik şartname.
  • İLBANK (2017). İller Bankası Anonim Şirketi. İller Bankası Anonim Şirketi Samsun Bölge Müdürlüğü. Ayancık (Sinop) içme suyu kesin projesi, Samsun.
  • İLBANK (2022). İller Bankası Anonim Şirketi. Yatırım ve Koordinasyon Daire Başkanlığı. 2020 yılı altyapı tesisleri birim fiyat cetvelleri, Ankara.
  • Kanakoudis, V. and Gonelas, K. 2014. Developing a methodology towards full cost recovery in urban water pipe networks, based on the “User Pays” principle. University of Thessaly, Civil Engineering Department, Pedion Areas, Volos, Greece.
  • Kanakoudis, V. and Muhammetoglu, H. 2014. Urban pipe networks management towards on‐revenue water reduction: Two case studies from Greece and Turkey. CLEAN–Soil, Air, Water, 42(7), 880-892.
  • Lambert, A. (2001). What do we know about pressure: Leakage relationships in distribution systems. In IWA Conf. n Systems approach to leakage control and water distribution system management.
  • Lenzi, C., Bragalli, C., Bolognesi, A., and Fortini, M. (2014). Infrastructure leakage index assessment in large water systems. Procedia Engineering, 70, 1017-1026.
  • Lim, E. (2015). Development of a leakage target setting approach for South Korea based on economic level of leakage. University of Exeter College of Engineering, Mathemetics and Physical Sciences Theses of Master of Philosopy in Engineering. United Kingdom.
  • Liemberger, R., and McKenzie, R. (2005). Accuracy limitations of the ILI: is it an appropriate indicator for developing countries. In Conference Proceedings, IWA Leakage 2005 Conference in Halifax, Nova Scotia, Canada.
  • Malm, A., Svensson, G., Røstum, J., and Axell, L. (2020). Sustainable economic level of leakage in Norway and Sweden–manual of practice. Water Practice and Technology.
  • Merzifon Belediyesi (2020). Su ve Kanalizasyon Müdürlüğü. Faaliyet raporları. Merzifon.
  • Moyer, E. E., Male, J. W., Moore, I. C., ve Hock, J. G. (1983). The economics off leak detection and repair—a case study. Journal‐American Water Works Association, 75(1), 28-34.
  • Ofwat, U. (2002). Leakage target, setting for water companies in England and Wales. Summary report, March.
  • Pearson, D. ve Trow, S. W. (2005). Calculating economic levels of leakage. In leakage 2005 conference proceedings (pp. 1-16).
  • Yılmaz, S., Fırat, M., Ateş, A., ve Özdemir, Ö. (2021). Aktif kaçak kontrolü uygulanarak ekonomik kaçak seviyesi ve altyapı kaçak indeks göstergesinin analizi. Journal of Pipeline Systems Engineering and Practice , 12 (4), 04021046.
  • Yilmaz, S., Firat, M., ATEŞ, A., ve Ozdemir, O. (2021). Defınıng the optımum pressure for actıve leakage control efficiency by considering economic criteria. Fresenius Environmental Bulletin, 30(7A).
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Prof.dr. Mustafa Tombul 0000-0002-1875-8042

Mustafa Tuna 0000-0002-9614-6076

Selim Armut 0000-0001-6506-8960

Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 14 Issue: Özel Sayı

Cite

APA Tombul, P. M., Tuna, M., & Armut, S. (2022). İçme Suyu Şebekelerinde Fiziki Kayıpların Sürdürülebilir Ekonomik Seviyesinin Belirlenmesi: Merzifon Örneği. İDEALKENT, 14(Özel Sayı), 289-314. https://doi.org/10.31198/idealkent.1099477