Research Article
BibTex RIS Cite
Year 2023, , 61 - 69, 30.12.2023
https://doi.org/10.38061/idunas.1401075

Abstract

References

  • 1. Karalarlıoğlu Camcı, D. (2017). Source of semiprimeness and multiplicative (generalized) derivations in rings, Doctoral Thesis, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
  • 2. Aydın, N., Demir, Ç., Karalarlıoğlu Camcı, D. (2018). The source of semiprimeness of rings, Communications of the Korean Mathematical Society, 33(4), 1083-1096.
  • 3. Karalarlıoğlu Camcı, D., Yeşil, D., Mekera, R., Camcı, Ç. A Generalization of Source of Semiprimeness, Submitted.
  • 4. Azumaya, G. (1948). On generalized semi-primary rings and Krull-Remak-Schmidt’s theorem, Japanese Journal of Mathematics, 19, 525-547.
  • 5. Baer, R. (1943). Radical ideals, American Journal of Mathematics, 65, 537-568.
  • 6. Brown B., McCoy, N. H. (1947). Radicals and subdirect sums, American Journal of Mathematics, 67, 46-58.
  • 7. Jacobson, N. (1945). The radical and semi-simplicity for arbitrary rings, American Journal of Mathematics, 76, 300-320.
  • 8. Köthe, G. (1930). Die Strukture der Ringe deren Restklassenring nach den Radikal vollstandigreduzibel ist, Mathematische Zeitschrift, 32, 161-186.
  • 9. Levitzki, J. (1943). On the radical of a ring, Bulletin of the American Mathematical Society, 49, 462-466.
  • 10. McCoy, N. H. (1949). Prime ideals in general rings, American Journal of Mathematics, 71, 833-833.
  • 11. McCoy, N. H. (1964). The Theory of Rings. The Macmillan Co.
  • 12. Harehdashti, J. B., Moghimi, H. F. (2017). A Generalization of the prime radical of ideals in commutative rings, Communication of the Korean Mathematical Society, 32 (3), 543–552.
  • 13. Clark, W. E. (1968). Generalized Radical Rings, Canadian Journal of Mathematics , 20, 88 - 94.

A Generalization of the Prime Radical of Rings

Year 2023, , 61 - 69, 30.12.2023
https://doi.org/10.38061/idunas.1401075

Abstract

Let $R$ be a ring, $I$ be an ideal of $R$, and $\sqrt{I}$ be a prime radical of $I$. This study generalizes the prime radical of $\sqrt{I}$ where it denotes by $\sqrt[n+1]{I}$, for $n\in \mathbb{Z}^{+}$. This generalization is called $n$-prime
radical of ideal $I$. Moreover, this paper shows that $R$ is isomorphic to a subdirect sum of ring $H_{i}$ where $%
H_{i}$ are $n$-prime rings. Furthermore, two open problems are presented.

References

  • 1. Karalarlıoğlu Camcı, D. (2017). Source of semiprimeness and multiplicative (generalized) derivations in rings, Doctoral Thesis, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
  • 2. Aydın, N., Demir, Ç., Karalarlıoğlu Camcı, D. (2018). The source of semiprimeness of rings, Communications of the Korean Mathematical Society, 33(4), 1083-1096.
  • 3. Karalarlıoğlu Camcı, D., Yeşil, D., Mekera, R., Camcı, Ç. A Generalization of Source of Semiprimeness, Submitted.
  • 4. Azumaya, G. (1948). On generalized semi-primary rings and Krull-Remak-Schmidt’s theorem, Japanese Journal of Mathematics, 19, 525-547.
  • 5. Baer, R. (1943). Radical ideals, American Journal of Mathematics, 65, 537-568.
  • 6. Brown B., McCoy, N. H. (1947). Radicals and subdirect sums, American Journal of Mathematics, 67, 46-58.
  • 7. Jacobson, N. (1945). The radical and semi-simplicity for arbitrary rings, American Journal of Mathematics, 76, 300-320.
  • 8. Köthe, G. (1930). Die Strukture der Ringe deren Restklassenring nach den Radikal vollstandigreduzibel ist, Mathematische Zeitschrift, 32, 161-186.
  • 9. Levitzki, J. (1943). On the radical of a ring, Bulletin of the American Mathematical Society, 49, 462-466.
  • 10. McCoy, N. H. (1949). Prime ideals in general rings, American Journal of Mathematics, 71, 833-833.
  • 11. McCoy, N. H. (1964). The Theory of Rings. The Macmillan Co.
  • 12. Harehdashti, J. B., Moghimi, H. F. (2017). A Generalization of the prime radical of ideals in commutative rings, Communication of the Korean Mathematical Society, 32 (3), 543–552.
  • 13. Clark, W. E. (1968). Generalized Radical Rings, Canadian Journal of Mathematics , 20, 88 - 94.
There are 13 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Didem Karalarlıoğlu Camcı 0000-0002-8413-3753

Didem Yeşil 0000-0003-0666-9410

Rasie Mekera 0000-0002-0092-2991

Çetin Camcı 0000-0002-0122-559X

Publication Date December 30, 2023
Submission Date December 6, 2023
Acceptance Date December 18, 2023
Published in Issue Year 2023

Cite

APA Karalarlıoğlu Camcı, D., Yeşil, D., Mekera, R., Camcı, Ç. (2023). A Generalization of the Prime Radical of Rings. Natural and Applied Sciences Journal, 6(2), 61-69. https://doi.org/10.38061/idunas.1401075