Research Article
BibTex RIS Cite

ADAPTATION OF LANCHESTER N2 LAW TO PREVEZA NAVAL VICTORY AND THE ANALYSIS OF ALTERNATIVE SCENARIOS

Year 2019, Volume: 2 Issue: 1, 18 - 40, 03.07.2019

Abstract

Preveze Deniz Zaferi has a very important place in
Turkish maritime history. In this study, the victory won by the unique strategy
of Grand Admiral Barbaros Hayrettin Pasha will be explained by the laws of
Lanchester and the effect of this strategy will be analyzed in an alternative
scenario.

References

  • Adomian, G. (1986). Solution of Lanchester Equation Models for Combat. Journal of Mathematical Analysis and Applications, 114, 176-177.
  • Arıkan, M., Toledo, P. (1992). Türk Deniz Tarihi ile İlgili Belgeler HI N., İspanya, Kuzey Afrika ve Barbaros Hayrettin Paşa. Ankara Üniversitesi Osmanlı Tarihi Araştırma Ve Uygulama Merkezi Dergisi, 3, 389-412.
  • Chen, H-M. (2003). An Optimal Control Problem in Determining The Optimal Reinforcement Schedules for The Lanchester Equations. Computers & Operations Research, 30, 1051-1066.
  • Chen, H-M. (2007). A Non-Linear Inverse Lanchester Square Law Problem in Estimating The Force Dependent Attrition Coefficients. European Journal of Operational Research, 182, 911–922.
  • Chen, X., Jiang, N., Jing, Y., Stojanovski, G., Dimirovski, G. M. (2011). Differential Game Model and Its Solutions for Force Resource Complementary via Lanchester Square Law Equation. Proceedings of the 18th World Congress The International Federation of Automatic Control, 2011, Ağustos 28 - Eylül 2, Milano (İtalya). 14229-14233.
  • Duffey, R. B. (2017). Dynamic Theory of Losses in Wars and Conflicts. European Journal of Operational Research, 261, 1013-1027.
  • Feichtinger, G., Novak, A., Wrzaczek, S. (2012), Optimizing Counter-terroristic Operations in an Asymmetric Lanchester Model. 15th IFAC Workshop on Control Applications of Optimization The International Federation of Automatic Control, 2012, Eylül 13-16, Rimini, İtalya.
  • Flores, J. C. (2017). Trojan War Displayed As A Full Annihilation–Diffusion–Reaction Model. Physica A, 467, 432-435
  • Gonzalez, E., Vilena, M. (2012). Spatial Lanchester Models. European Journal of Operational Research, 210, 706-715.
  • Huang, J., Leng, M., Liang, L. (2012). Recent Developments in Dynamic Advertising Research. European Journal of Operational Research, 220, 591-609.
  • Ibarra, D. B. (Çev: Kutlu, M. N.). (2001). Barbaros Hayrettin Paşa ve Mağrib’in Osmanlılaşması. Ankara Üniversitesi Osmanlı Tarihi Araştırma ve Uygulama Merkezi Dergisi, 12, 261-279.
  • Johnson, D. D.P., Mackay, N. J. (2015). Fight The Power: Lanchester’s Laws of Combat in Human Evolution. Evolution and Human Behavior, 36, 152-163.
  • Kavas, A. (2016). Osmanlı Devleti’ni Kuzey Afrika’da Kalıcılaştıran Sefer: Tunus Savaşı (1574), İstanbul Medeniyet Üniversitesi. Siyasal Bilgiler Fakültesi Dergisi (İSMUS), I/1, 1-42.
  • Keane, T. (2011). Combat Modelling with Partial Differential Equations. Applied Mathematical Modelling, 35, 2723-2735.
  • Köktürk, G. (2014). Türk Denizcilik Tarihinde Barbaros Hayrettin Paşa: Hayatı, Denizcilik Tarihi Açısından Yeri ve Önemi. Uluslararası Piri Reis ve Türk Denizcilik Tarihi Sempozyumu, Türk Denizcilik Tarihi Bildiriler, 6. Cilt, 26-29 Eylül 2013, İstanbul. (Kitap Basımı: Türk Tarih Kurumu, Ankara, 2014), 81-99.
  • Kress, M., Caulkins, J. P., Feichtinger, G., Grass, D., Seidl, A. (2018). Lanchester Model for Three Way Combat, European Journal of Operational Research, 264, 46-54.
  • Kress, M., Mackay, N. J. (2014). Bits or Shots in Combat? The Generalized Deitchman’s Model of Guerrilla Warfare. Operations Research Letters, 42, 102-108.
  • Lin, K., MacKay, N. J. (2014). The Optimal Policy for The One-Against-Many Heterogenous Lanchester Model. Operations Research Letters, 42, 473-477.
  • Martin-Herran, G., McQuitty, S., Sigue, S. P. (2012). Offensive Versus Defensive Marketing: What is The Optimal Spending Allocation?. International Journal of Research in Marketing, 29, 210-219.
  • Pettit, L.I; Wiper, Michael P; Young, K.D.S. (2003). Bayesian Inference for Some Lanchester Combat Laws. European Journal of Operational Research, 148, 152–165.
  • Schramm, H. C., Dimitrov, N. B. (2014). Differential Equation Models for Sharp Threshold Dynamics. Mathematical Biosciences, 247, 27-37.
  • Spradlin, C., Spradlin, G. (2007). Lanchester’s Equations in Three Dimensions. Computers and Mathematics with Applications, 53, 999-1011.
  • Taoka, N. (1997). Lanchester Strategy An Introduction Volume 1, Lanchester Press Inc., Sunnyvale, California, USA.
  • Taylor, J. G. (1982). Annihilation Prediction for Lanchester-Type Models of Modern Warfare with Logistics Constraints. Mathematical Modelling, 3, 323-340.
  • Taylor, J. G. (1984). Battle-Outcome Prediction for An Extended System of Lanchester-Type Differential Equations. Journal of Mathematical Analysis And Applications, 103, 371-379.
  • Wang, Q., Wu, Z. (2007). An Empirical Study on The Lanchester Model of Combat for Competitive Advertising Decisions. European Journal of Operational Research, 183, 871–881.

LANCHESTER N2 KANUNUNUN PREVEZE DENİZ ZAFERİNE UYARLANMASI VE ALTERNATİF SENARYOLARIN ANALİZİ

Year 2019, Volume: 2 Issue: 1, 18 - 40, 03.07.2019

Abstract

Preveze Deniz Zaferi Türk denizcilik tarihinde çok önemli bir yere
sahiptir. Bu çalışmada, Büyük Amiral Barbaros Hayrettin Paşa’nın uyguladığı
eşsiz strateji ile kazanılan zafer Lanchester’in savaş kanunları ile
açıklanacak ve bu strateji uygulanmasaydı nasıl bir sonuç elde edileceği de
alternatif bir senaryo ile analiz edilecektir.

References

  • Adomian, G. (1986). Solution of Lanchester Equation Models for Combat. Journal of Mathematical Analysis and Applications, 114, 176-177.
  • Arıkan, M., Toledo, P. (1992). Türk Deniz Tarihi ile İlgili Belgeler HI N., İspanya, Kuzey Afrika ve Barbaros Hayrettin Paşa. Ankara Üniversitesi Osmanlı Tarihi Araştırma Ve Uygulama Merkezi Dergisi, 3, 389-412.
  • Chen, H-M. (2003). An Optimal Control Problem in Determining The Optimal Reinforcement Schedules for The Lanchester Equations. Computers & Operations Research, 30, 1051-1066.
  • Chen, H-M. (2007). A Non-Linear Inverse Lanchester Square Law Problem in Estimating The Force Dependent Attrition Coefficients. European Journal of Operational Research, 182, 911–922.
  • Chen, X., Jiang, N., Jing, Y., Stojanovski, G., Dimirovski, G. M. (2011). Differential Game Model and Its Solutions for Force Resource Complementary via Lanchester Square Law Equation. Proceedings of the 18th World Congress The International Federation of Automatic Control, 2011, Ağustos 28 - Eylül 2, Milano (İtalya). 14229-14233.
  • Duffey, R. B. (2017). Dynamic Theory of Losses in Wars and Conflicts. European Journal of Operational Research, 261, 1013-1027.
  • Feichtinger, G., Novak, A., Wrzaczek, S. (2012), Optimizing Counter-terroristic Operations in an Asymmetric Lanchester Model. 15th IFAC Workshop on Control Applications of Optimization The International Federation of Automatic Control, 2012, Eylül 13-16, Rimini, İtalya.
  • Flores, J. C. (2017). Trojan War Displayed As A Full Annihilation–Diffusion–Reaction Model. Physica A, 467, 432-435
  • Gonzalez, E., Vilena, M. (2012). Spatial Lanchester Models. European Journal of Operational Research, 210, 706-715.
  • Huang, J., Leng, M., Liang, L. (2012). Recent Developments in Dynamic Advertising Research. European Journal of Operational Research, 220, 591-609.
  • Ibarra, D. B. (Çev: Kutlu, M. N.). (2001). Barbaros Hayrettin Paşa ve Mağrib’in Osmanlılaşması. Ankara Üniversitesi Osmanlı Tarihi Araştırma ve Uygulama Merkezi Dergisi, 12, 261-279.
  • Johnson, D. D.P., Mackay, N. J. (2015). Fight The Power: Lanchester’s Laws of Combat in Human Evolution. Evolution and Human Behavior, 36, 152-163.
  • Kavas, A. (2016). Osmanlı Devleti’ni Kuzey Afrika’da Kalıcılaştıran Sefer: Tunus Savaşı (1574), İstanbul Medeniyet Üniversitesi. Siyasal Bilgiler Fakültesi Dergisi (İSMUS), I/1, 1-42.
  • Keane, T. (2011). Combat Modelling with Partial Differential Equations. Applied Mathematical Modelling, 35, 2723-2735.
  • Köktürk, G. (2014). Türk Denizcilik Tarihinde Barbaros Hayrettin Paşa: Hayatı, Denizcilik Tarihi Açısından Yeri ve Önemi. Uluslararası Piri Reis ve Türk Denizcilik Tarihi Sempozyumu, Türk Denizcilik Tarihi Bildiriler, 6. Cilt, 26-29 Eylül 2013, İstanbul. (Kitap Basımı: Türk Tarih Kurumu, Ankara, 2014), 81-99.
  • Kress, M., Caulkins, J. P., Feichtinger, G., Grass, D., Seidl, A. (2018). Lanchester Model for Three Way Combat, European Journal of Operational Research, 264, 46-54.
  • Kress, M., Mackay, N. J. (2014). Bits or Shots in Combat? The Generalized Deitchman’s Model of Guerrilla Warfare. Operations Research Letters, 42, 102-108.
  • Lin, K., MacKay, N. J. (2014). The Optimal Policy for The One-Against-Many Heterogenous Lanchester Model. Operations Research Letters, 42, 473-477.
  • Martin-Herran, G., McQuitty, S., Sigue, S. P. (2012). Offensive Versus Defensive Marketing: What is The Optimal Spending Allocation?. International Journal of Research in Marketing, 29, 210-219.
  • Pettit, L.I; Wiper, Michael P; Young, K.D.S. (2003). Bayesian Inference for Some Lanchester Combat Laws. European Journal of Operational Research, 148, 152–165.
  • Schramm, H. C., Dimitrov, N. B. (2014). Differential Equation Models for Sharp Threshold Dynamics. Mathematical Biosciences, 247, 27-37.
  • Spradlin, C., Spradlin, G. (2007). Lanchester’s Equations in Three Dimensions. Computers and Mathematics with Applications, 53, 999-1011.
  • Taoka, N. (1997). Lanchester Strategy An Introduction Volume 1, Lanchester Press Inc., Sunnyvale, California, USA.
  • Taylor, J. G. (1982). Annihilation Prediction for Lanchester-Type Models of Modern Warfare with Logistics Constraints. Mathematical Modelling, 3, 323-340.
  • Taylor, J. G. (1984). Battle-Outcome Prediction for An Extended System of Lanchester-Type Differential Equations. Journal of Mathematical Analysis And Applications, 103, 371-379.
  • Wang, Q., Wu, Z. (2007). An Empirical Study on The Lanchester Model of Combat for Competitive Advertising Decisions. European Journal of Operational Research, 183, 871–881.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Articles
Authors

Aşkın Özdağoğlu 0000-0001-5299-0622

Publication Date July 3, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Özdağoğlu, A. (2019). LANCHESTER N2 KANUNUNUN PREVEZE DENİZ ZAFERİNE UYARLANMASI VE ALTERNATİF SENARYOLARIN ANALİZİ. Izmir Democracy University Social Sciences Journal, 2(1), 18-40.