Research Article
BibTex RIS Cite
Year 2025, , 112 - 124, 14.01.2025
https://doi.org/10.24330/ieja.1488479

Abstract

References

  • L. Amata, A. Ficarra and M. Crupi, A numerical characterization of the extremal Betti numbers of {$t$}-spread strongly stable ideals, J. Algebraic Combin., 55(3) (2022), 891-918.
  • R. R. Bouchat and T. M. Brown, Fibonacci numbers and resolutions of domino ideals, J. Algebra Comb. Discrete Struct. Appl., 6(2) (2019), 63-74.
  • S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra, 129(1) (1990), 1-25.
  • G. Fatabbi, On the resolution of ideals of fat points, J. Algebra, 242(1) (2001), 92-108.
  • C. A. Francisco, Resolutions of small sets of fat points, J. Pure Appl. Algebra, 203(1-3) (2005), 220-236.
  • C. A. Francisco, H. T. Hà and A. Van Tuyl, Splittings of monomial ideals, Proc. Amer. Math. Soc., 137(10) (2009), 3271-3282.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www2.macaulay2.com.
  • S. Güntürkün, Boij-Söderberg decompositions of lexicographic ideals, J. Commut. Algebra, 13(2) (2021), 209-234.
  • H. T. Hà and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin., 27(2) (2008), 215-245.

Generalized splittings of monomial ideals

Year 2025, , 112 - 124, 14.01.2025
https://doi.org/10.24330/ieja.1488479

Abstract

Eliahou and Kervaire defined splittable monomial ideals and provided a relationship between the Betti numbers of the more complicated ideal in terms of the less complicated pieces. We extend the concept of splittable monomial ideals showing that an ideal which was not splittable according to the original definition is splittable in this more general definition. Further, we provide a generalized version of the result concerning the relationship between the Betti numbers.

References

  • L. Amata, A. Ficarra and M. Crupi, A numerical characterization of the extremal Betti numbers of {$t$}-spread strongly stable ideals, J. Algebraic Combin., 55(3) (2022), 891-918.
  • R. R. Bouchat and T. M. Brown, Fibonacci numbers and resolutions of domino ideals, J. Algebra Comb. Discrete Struct. Appl., 6(2) (2019), 63-74.
  • S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra, 129(1) (1990), 1-25.
  • G. Fatabbi, On the resolution of ideals of fat points, J. Algebra, 242(1) (2001), 92-108.
  • C. A. Francisco, Resolutions of small sets of fat points, J. Pure Appl. Algebra, 203(1-3) (2005), 220-236.
  • C. A. Francisco, H. T. Hà and A. Van Tuyl, Splittings of monomial ideals, Proc. Amer. Math. Soc., 137(10) (2009), 3271-3282.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www2.macaulay2.com.
  • S. Güntürkün, Boij-Söderberg decompositions of lexicographic ideals, J. Commut. Algebra, 13(2) (2021), 209-234.
  • H. T. Hà and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin., 27(2) (2008), 215-245.
There are 9 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Rachelle R. Bouchat This is me

Tricia Muldoon Brown This is me

Early Pub Date May 23, 2024
Publication Date January 14, 2025
Submission Date January 2, 2024
Acceptance Date March 2, 2024
Published in Issue Year 2025

Cite

APA Bouchat, R. R., & Brown, T. M. (2025). Generalized splittings of monomial ideals. International Electronic Journal of Algebra, 37(37), 112-124. https://doi.org/10.24330/ieja.1488479
AMA Bouchat RR, Brown TM. Generalized splittings of monomial ideals. IEJA. January 2025;37(37):112-124. doi:10.24330/ieja.1488479
Chicago Bouchat, Rachelle R., and Tricia Muldoon Brown. “Generalized Splittings of Monomial Ideals”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 112-24. https://doi.org/10.24330/ieja.1488479.
EndNote Bouchat RR, Brown TM (January 1, 2025) Generalized splittings of monomial ideals. International Electronic Journal of Algebra 37 37 112–124.
IEEE R. R. Bouchat and T. M. Brown, “Generalized splittings of monomial ideals”, IEJA, vol. 37, no. 37, pp. 112–124, 2025, doi: 10.24330/ieja.1488479.
ISNAD Bouchat, Rachelle R. - Brown, Tricia Muldoon. “Generalized Splittings of Monomial Ideals”. International Electronic Journal of Algebra 37/37 (January 2025), 112-124. https://doi.org/10.24330/ieja.1488479.
JAMA Bouchat RR, Brown TM. Generalized splittings of monomial ideals. IEJA. 2025;37:112–124.
MLA Bouchat, Rachelle R. and Tricia Muldoon Brown. “Generalized Splittings of Monomial Ideals”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 112-24, doi:10.24330/ieja.1488479.
Vancouver Bouchat RR, Brown TM. Generalized splittings of monomial ideals. IEJA. 2025;37(37):112-24.