BibTex RIS Cite

THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES

Year 2014, Volume: 15 Issue: 15, 41 - 55, 01.06.2014
https://doi.org/10.24330/ieja.266236
https://izlik.org/JA82HZ24ZE

Abstract

In this paper, we introduce the concept of total quantum integrals
in the case of weak Hopf algebras and study the affineness criterion for weak
Yetter-Drinfel’d modules, which is a generalization of the results studied by
Menini and Militaru (J. Algebra, 247 (2002), 467-508).

References

  • G. B¨ohm, Doi-Hopf modules over weak Hopf algebras, Comm. Algebra, 28 (2000), 4687–4698.
  • G. B¨ohm, F. Nill and K. Szlach´anyi, Weak Hopf algebras I: Integral theory and C*-structure, J. Algebra, 221 (1999) 385–438.
  • S. Caenepeel and E. De Groot, Modules over weak entwining structures, Con- temp. Math., 267 (2000), 31–54.
  • S. Caenepeel, G. Militaru, Bogdan Ion and S. L. Zhu, Separable functors for the category of Doi-Hopf modules, applications, Adv. Math., 145 (1999), 239–290.
  • S. Caenepeel, G. Militaru and S. L. Zhu, Crossed modules and Doi-Hopf mod- ules, Israel J. Math., 100 (1997), 221–247.
  • S. Caenepeel, D. G. Wang and Y. M. Yin, Yetter-Drinfel’d modules over weak bialgebras, Ann. Univ. Ferrara-Sez. VII-Sc. Mat., 51 (2005), 69–98.
  • Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Al- gebra, 13 (1985), 2137–2159.
  • R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math., 91 (1969), 75–94.
  • C. Menini and G. Militaru, Integrals, quantum Galois extensions and the affine- ness criterion for quantum Yetter-Drinfel’d modules, J. Algebra, 247 (2002), –508
  • M. E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series, W.A. Ben- jamin, Inc. New York, 1969.
  • L. Y. Zhang, The structure theorem of weak comodule algebras, Comm. Alge- bra, 38 (2010), 254–260. Shuangjian Guo
  • School of Mathematics and Statistics Guizhou University of Finance and Economics Guiyang, Guizhou 550025, China e-mail: shuangjguo@gmail.com

Year 2014, Volume: 15 Issue: 15, 41 - 55, 01.06.2014
https://doi.org/10.24330/ieja.266236
https://izlik.org/JA82HZ24ZE

Abstract

References

  • G. B¨ohm, Doi-Hopf modules over weak Hopf algebras, Comm. Algebra, 28 (2000), 4687–4698.
  • G. B¨ohm, F. Nill and K. Szlach´anyi, Weak Hopf algebras I: Integral theory and C*-structure, J. Algebra, 221 (1999) 385–438.
  • S. Caenepeel and E. De Groot, Modules over weak entwining structures, Con- temp. Math., 267 (2000), 31–54.
  • S. Caenepeel, G. Militaru, Bogdan Ion and S. L. Zhu, Separable functors for the category of Doi-Hopf modules, applications, Adv. Math., 145 (1999), 239–290.
  • S. Caenepeel, G. Militaru and S. L. Zhu, Crossed modules and Doi-Hopf mod- ules, Israel J. Math., 100 (1997), 221–247.
  • S. Caenepeel, D. G. Wang and Y. M. Yin, Yetter-Drinfel’d modules over weak bialgebras, Ann. Univ. Ferrara-Sez. VII-Sc. Mat., 51 (2005), 69–98.
  • Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Al- gebra, 13 (1985), 2137–2159.
  • R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math., 91 (1969), 75–94.
  • C. Menini and G. Militaru, Integrals, quantum Galois extensions and the affine- ness criterion for quantum Yetter-Drinfel’d modules, J. Algebra, 247 (2002), –508
  • M. E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series, W.A. Ben- jamin, Inc. New York, 1969.
  • L. Y. Zhang, The structure theorem of weak comodule algebras, Comm. Alge- bra, 38 (2010), 254–260. Shuangjian Guo
  • School of Mathematics and Statistics Guizhou University of Finance and Economics Guiyang, Guizhou 550025, China e-mail: shuangjguo@gmail.com
There are 12 citations in total.

Details

Other ID JA25HN93JN
Authors

Shuangjian Guo This is me

Publication Date June 1, 2014
DOI https://doi.org/10.24330/ieja.266236
IZ https://izlik.org/JA82HZ24ZE
Published in Issue Year 2014 Volume: 15 Issue: 15

Cite

APA Guo, S. (2014). THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES. International Electronic Journal of Algebra, 15(15), 41-55. https://doi.org/10.24330/ieja.266236
AMA 1.Guo S. THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES. IEJA. 2014;15(15):41-55. doi:10.24330/ieja.266236
Chicago Guo, Shuangjian. 2014. “THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES”. International Electronic Journal of Algebra 15 (15): 41-55. https://doi.org/10.24330/ieja.266236.
EndNote Guo S (June 1, 2014) THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES. International Electronic Journal of Algebra 15 15 41–55.
IEEE [1]S. Guo, “THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES”, IEJA, vol. 15, no. 15, pp. 41–55, June 2014, doi: 10.24330/ieja.266236.
ISNAD Guo, Shuangjian. “THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES”. International Electronic Journal of Algebra 15/15 (June 1, 2014): 41-55. https://doi.org/10.24330/ieja.266236.
JAMA 1.Guo S. THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES. IEJA. 2014;15:41–55.
MLA Guo, Shuangjian. “THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES”. International Electronic Journal of Algebra, vol. 15, no. 15, June 2014, pp. 41-55, doi:10.24330/ieja.266236.
Vancouver 1.Guo S. THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL’D MODULES. IEJA [Internet]. 2014 June 1;15(15):41-55. Available from: https://izlik.org/JA82HZ24ZE