BibTex RIS Cite

DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS

Year 2012, Volume: 12 Issue: 12, 53 - 74, 01.12.2012

Abstract

An integral domain R is a GCD-Bezout domain if the Bezout
identity holds for any finite set of nonzero elements of R whose gcd exists.
Such domains are characterized as the DW-domains having the PSP-property.
Using the notion of primitive and superprimitive ideals, we define a (semi)star
operation, the q-operation, which is closely related to the w-operation and the
p-operation introduced by Anderson. We use q-operation to characterize the
GCD-Bezout domains and study various properties of these domains.

References

  • J. Arnold and P. Sheldon, Integral Domains that satisfy Gauss’s Lemma, Michi- gan Math. J., 22 (1975), 39–51.
  • D.F. Anderson, Integral v-ideals, Glasgow Math. J., 22 (1981), 167–172.
  • A. Bouvier, Le Groupe des Classes d’un anneau int´egre, IV Congr`es national des Soci´et´es Savantes, Brest, 107 (1982), 85–92.
  • S. El Baghdadi and S. Gabelli, w-divisorial domains, J. Algebra, 285(1) (2005), –355.
  • M. Fontana and S. Gabelli, Pr¨ufer domains with class group generated by the classes of the invertible maximal ideals, Comm. Algebra, 25(12) (1997), 3993–
  • M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra, 181(3) (1996), 803–835.
  • M. Fontana and J. Huckaba, Localizing systems and semistar operations, Non- Noetherian Commutative Ring Theory, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000, 169–197.
  • S. Gabelli and F. Tartarone, On the class group of integer-valued polynomial rings over Krull domains, J. Pure Appl. Algebra, 149 (2000), 47–67.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972; rep.
  • Queen’s Papers in Pure and Applied Mathematics, Vol. 90, Queen’s University, Kingston, 1992.
  • S. Glaz and W.V. Vasconcelos, Flat ideals. II, Manuscripta Math., 22(4) (1977), 325–341.
  • B.G. Kang, Pr¨ufer v-multiplication domains and the ring R[X]Nv, J. Algebra, (1) (1989), 151–170.
  • I. Kaplansky, Commutative Rings, Rev. ed. University of Chicago Press, Chicago and London, 1974.
  • K.A. Loper, Two Pr¨ufer domain counterexamples, J. Algebra, 221(2) (1999), –643.
  • A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Algebra, (5) (2005), 1345–1355.
  • A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ., 17 (1994), 1–21.
  • G. Picozza and F. Tartarone, When the semistar operation ˜? is the identity, Comm. Algebra, 36 (2008), 1954–1975. Mi Hee Park
  • Department of Mathematics Chung-Ang University Seoul 156-756, Korea e-mail: mhpark@cau.ac.kr Francesca Tartarone Dipartimento di Matematica Universit`a degli studi Roma Tre Largo San Leonardo Murialdo , 00146 Roma, Italy e-mail: tfrance@mat.uniroma3.it

Year 2012, Volume: 12 Issue: 12, 53 - 74, 01.12.2012

Abstract

References

  • J. Arnold and P. Sheldon, Integral Domains that satisfy Gauss’s Lemma, Michi- gan Math. J., 22 (1975), 39–51.
  • D.F. Anderson, Integral v-ideals, Glasgow Math. J., 22 (1981), 167–172.
  • A. Bouvier, Le Groupe des Classes d’un anneau int´egre, IV Congr`es national des Soci´et´es Savantes, Brest, 107 (1982), 85–92.
  • S. El Baghdadi and S. Gabelli, w-divisorial domains, J. Algebra, 285(1) (2005), –355.
  • M. Fontana and S. Gabelli, Pr¨ufer domains with class group generated by the classes of the invertible maximal ideals, Comm. Algebra, 25(12) (1997), 3993–
  • M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra, 181(3) (1996), 803–835.
  • M. Fontana and J. Huckaba, Localizing systems and semistar operations, Non- Noetherian Commutative Ring Theory, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000, 169–197.
  • S. Gabelli and F. Tartarone, On the class group of integer-valued polynomial rings over Krull domains, J. Pure Appl. Algebra, 149 (2000), 47–67.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972; rep.
  • Queen’s Papers in Pure and Applied Mathematics, Vol. 90, Queen’s University, Kingston, 1992.
  • S. Glaz and W.V. Vasconcelos, Flat ideals. II, Manuscripta Math., 22(4) (1977), 325–341.
  • B.G. Kang, Pr¨ufer v-multiplication domains and the ring R[X]Nv, J. Algebra, (1) (1989), 151–170.
  • I. Kaplansky, Commutative Rings, Rev. ed. University of Chicago Press, Chicago and London, 1974.
  • K.A. Loper, Two Pr¨ufer domain counterexamples, J. Algebra, 221(2) (1999), –643.
  • A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Algebra, (5) (2005), 1345–1355.
  • A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ., 17 (1994), 1–21.
  • G. Picozza and F. Tartarone, When the semistar operation ˜? is the identity, Comm. Algebra, 36 (2008), 1954–1975. Mi Hee Park
  • Department of Mathematics Chung-Ang University Seoul 156-756, Korea e-mail: mhpark@cau.ac.kr Francesca Tartarone Dipartimento di Matematica Universit`a degli studi Roma Tre Largo San Leonardo Murialdo , 00146 Roma, Italy e-mail: tfrance@mat.uniroma3.it
There are 18 citations in total.

Details

Other ID JA83AH83PJ
Authors

Mi Hee Park This is me

Francesca Tartarone This is me

Publication Date December 1, 2012
Published in Issue Year 2012 Volume: 12 Issue: 12

Cite

APA Park, M. H., & Tartarone, F. (2012). DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. International Electronic Journal of Algebra, 12(12), 53-74. https://izlik.org/JA58CE99ZK
AMA 1.Park MH, Tartarone F. DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. IEJA. 2012;12(12):53-74. https://izlik.org/JA58CE99ZK
Chicago Park, Mi Hee, and Francesca Tartarone. 2012. “DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS”. International Electronic Journal of Algebra 12 (12): 53-74. https://izlik.org/JA58CE99ZK.
EndNote Park MH, Tartarone F (December 1, 2012) DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. International Electronic Journal of Algebra 12 12 53–74.
IEEE [1]M. H. Park and F. Tartarone, “DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS”, IEJA, vol. 12, no. 12, pp. 53–74, Dec. 2012, [Online]. Available: https://izlik.org/JA58CE99ZK
ISNAD Park, Mi Hee - Tartarone, Francesca. “DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS”. International Electronic Journal of Algebra 12/12 (December 1, 2012): 53-74. https://izlik.org/JA58CE99ZK.
JAMA 1.Park MH, Tartarone F. DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. IEJA. 2012;12:53–74.
MLA Park, Mi Hee, and Francesca Tartarone. “DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS”. International Electronic Journal of Algebra, vol. 12, no. 12, Dec. 2012, pp. 53-74, https://izlik.org/JA58CE99ZK.
Vancouver 1.Park MH, Tartarone F. DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. IEJA [Internet]. 2012 Dec. 1;12(12):53-74. Available from: https://izlik.org/JA58CE99ZK