C. Andrei, V. Ene and B. Lajmiri, Powers of t-spread principal Borel ideals,
Arch. Math. (Basel), 112(6) (2019), 587-597.
A. Aramova, J. Herzog and T. Hibi, Squarefree lexsegment ideals, Math. Z.,
228(2) (1998), 353-378.
A. Aslam, The stable set of associated prime ideals of a squarefree principal
Borel ideal, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 57(105) (2014), 243-
252.
M. Brodmann, Asymptotic stability of Ass(M=InM), Proc. Amer. Math. Soc.,
74(1) (1979), 16-18.
M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge
Philos. Soc., 86 (1979), 35-39.
W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced
Mathematics, 39, Cambridge University Press, Cambridge, 1993.
E. De Negri, Toric rings generated by special stable sets of monomials, Math.
Nachr., 203(1) (1999), 31-45.
D. Eisenbud, Commutative Algebra: with a view toward algebraic geometry,
Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.
V. Ene and J. Herzog, Grobner Bases in Commutative Algebra, Graduate
Studies in Mathematics, 130, American Mathematical Society, Providence, RI,
2012.
V. Ene, J. Herzog and A. Asloob Qureshi, t-spread strongly stable ideals,
arXiv:1805.02368 [math.AC].
C. A. Francisco, Minimal graded Betti numbers and stable ideals, Comm. Algebra,
31(10) (2003), 4971-4987.
C. A. Francisco, J. Mermin and J. Schweig, Borel generators, J. Algebra, 332(1)
(2011), 522-542.
J. Herzog and T. Hibi, The depth of powers of an ideal, J. Algebra, 291(2)
(2005), 534-550.
J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260,
Springer-Verlag London, Ltd., London, 2011.
J. Herzog and T. Hibi, Bounding the socles of powers of squarefree monomial
ideals, Commutative Algebra and Noncommutative Algebraic Geometry, Vol.
II, Math. Sci. Res. Inst. Publ., 68, Cambridge Univ. Press, New York, (2015),
223-229.
J. Herzog, A. Rauf and M. Vladoiu, The stable set of associated prime ideals
of a polymatroidal ideal, J. Algebraic Combin., 37(2) (2013), 289-312.
G. Kalai, Algebraic shifting, in: Computational Commutative Algebra and
Combinatorics, (Osaka, 1999), Adv. Stud. Pure Math., 33, Math. Soc. Japan,
Tokyo, (2002), 121-163.
I. Peeva and M. Stillman, The minimal free resolution of a Borel ideal, Expo.
Math., 26(3) (2008), 237-247.
C. Andrei, V. Ene and B. Lajmiri, Powers of t-spread principal Borel ideals,
Arch. Math. (Basel), 112(6) (2019), 587-597.
A. Aramova, J. Herzog and T. Hibi, Squarefree lexsegment ideals, Math. Z.,
228(2) (1998), 353-378.
A. Aslam, The stable set of associated prime ideals of a squarefree principal
Borel ideal, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 57(105) (2014), 243-
252.
M. Brodmann, Asymptotic stability of Ass(M=InM), Proc. Amer. Math. Soc.,
74(1) (1979), 16-18.
M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge
Philos. Soc., 86 (1979), 35-39.
W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced
Mathematics, 39, Cambridge University Press, Cambridge, 1993.
E. De Negri, Toric rings generated by special stable sets of monomials, Math.
Nachr., 203(1) (1999), 31-45.
D. Eisenbud, Commutative Algebra: with a view toward algebraic geometry,
Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.
V. Ene and J. Herzog, Grobner Bases in Commutative Algebra, Graduate
Studies in Mathematics, 130, American Mathematical Society, Providence, RI,
2012.
V. Ene, J. Herzog and A. Asloob Qureshi, t-spread strongly stable ideals,
arXiv:1805.02368 [math.AC].
C. A. Francisco, Minimal graded Betti numbers and stable ideals, Comm. Algebra,
31(10) (2003), 4971-4987.
C. A. Francisco, J. Mermin and J. Schweig, Borel generators, J. Algebra, 332(1)
(2011), 522-542.
J. Herzog and T. Hibi, The depth of powers of an ideal, J. Algebra, 291(2)
(2005), 534-550.
J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260,
Springer-Verlag London, Ltd., London, 2011.
J. Herzog and T. Hibi, Bounding the socles of powers of squarefree monomial
ideals, Commutative Algebra and Noncommutative Algebraic Geometry, Vol.
II, Math. Sci. Res. Inst. Publ., 68, Cambridge Univ. Press, New York, (2015),
223-229.
J. Herzog, A. Rauf and M. Vladoiu, The stable set of associated prime ideals
of a polymatroidal ideal, J. Algebraic Combin., 37(2) (2013), 289-312.
G. Kalai, Algebraic shifting, in: Computational Commutative Algebra and
Combinatorics, (Osaka, 1999), Adv. Stud. Pure Math., 33, Math. Soc. Japan,
Tokyo, (2002), 121-163.
I. Peeva and M. Stillman, The minimal free resolution of a Borel ideal, Expo.
Math., 26(3) (2008), 237-247.
Herzog, J., Lajmiri, B., & Rahmati, F. (2019). ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS. International Electronic Journal of Algebra, 26(26), 224-244. https://doi.org/10.24330/ieja.587081
AMA
Herzog J, Lajmiri B, Rahmati F. ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS. IEJA. July 2019;26(26):224-244. doi:10.24330/ieja.587081
Chicago
Herzog, Jurgen, Bahareh Lajmiri, and Farhad Rahmati. “ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS”. International Electronic Journal of Algebra 26, no. 26 (July 2019): 224-44. https://doi.org/10.24330/ieja.587081.
EndNote
Herzog J, Lajmiri B, Rahmati F (July 1, 2019) ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS. International Electronic Journal of Algebra 26 26 224–244.
IEEE
J. Herzog, B. Lajmiri, and F. Rahmati, “ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS”, IEJA, vol. 26, no. 26, pp. 224–244, 2019, doi: 10.24330/ieja.587081.
ISNAD
Herzog, Jurgen et al. “ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS”. International Electronic Journal of Algebra 26/26 (July 2019), 224-244. https://doi.org/10.24330/ieja.587081.
JAMA
Herzog J, Lajmiri B, Rahmati F. ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS. IEJA. 2019;26:224–244.
MLA
Herzog, Jurgen et al. “ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS”. International Electronic Journal of Algebra, vol. 26, no. 26, 2019, pp. 224-4, doi:10.24330/ieja.587081.
Vancouver
Herzog J, Lajmiri B, Rahmati F. ON THE ASSOCIATED PRIME IDEALS AND THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS. IEJA. 2019;26(26):224-4.