Research Article
BibTex RIS Cite

Year 2020, Volume: 27 Issue: 27, 13 - 42, 07.01.2020
https://doi.org/10.24330/ieja.662946
https://izlik.org/JA37TT37TA

Abstract

References

  • G. Agnarsson, On a class of presentations of matrix algebras, Comm. Algebra, 24(14) (1996), 4331-4338.
  • G. Agnarsson, S. A. Amitsur and J. C. Robson, Recognition of matrix rings II, Israel J. Math., 96(part A) (1996), 1-13.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
  • G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • A. W. Chatters, Matrices, idealisers and integer quaternions, J. Algebra, 150(1) (1992), 45-56.
  • A. W. Chatters, Nonisomorphic rings with isomorphic matrix rings, Proc. Edinburgh Math. Soc. (Ser. 2), 36(2) (1993), 339-348.
  • T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.
  • T. Y. Lam and A. Leroy, Recognition and computations of matrix rings, Israel J. Math., 96(part B) (1996), 379-397.
  • J. C. Robson, Recognition of matrix rings, Comm. Algebra, 19(7) (1991), 2113- 2124.
  • L. H. Rowen, Ring Theory: Student Edition, Academic Press, Inc., Boston, MA, 1991.
  • S. P. Smith, An example of a ring Morita equivalent to the Weyl algebra A1, J. Algebra, 73(2) (1981), 552-555.

ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS

Year 2020, Volume: 27 Issue: 27, 13 - 42, 07.01.2020
https://doi.org/10.24330/ieja.662946
https://izlik.org/JA37TT37TA

Abstract

Recognizing when a ring is a complete matrix ring is of significant importance in algebra. It is well-known folklore that a ring $R$ is a complete $n\times n$ matrix ring, so $R\cong M_{n}(S)$ for some ring $S$, if and only if it contains a set of $n\times n$ matrix units $\{e_{ij}\}_{i,j=1}^n$. A more recent and less known result states that a ring $R$ is a complete $(m+n)\times(m+n)$ matrix ring if and only if, $R$ contains three elements, $a$, $b$, and $f$, satisfying the two relations $af^m+f^nb=1$ and $f^{m+n}=0$. In many instances the two elements $a$ and $b$ can be replaced by appropriate powers $a^i$ and $a^j$ of a single element $a$ respectively. In general very little is known about the structure of the ring $S$. In this article we study in depth the case $m=n=1$ when $R\cong M_2(S)$. More specifically we study the universal algebra over a commutative ring $A$ with elements $x$ and $y$ that satisfy the relations $x^iy+yx^j=1$ and $y^2=0$. We describe completely the structure of these $A$-algebras and their underlying rings when $\gcd(i,j)=1$. Finally we obtain results that fully determine when there are surjections onto $M_2(\field)$ when $\field$ is a base field $\rats$ or $\ints_p$ for a prime number $p$.

References

  • G. Agnarsson, On a class of presentations of matrix algebras, Comm. Algebra, 24(14) (1996), 4331-4338.
  • G. Agnarsson, S. A. Amitsur and J. C. Robson, Recognition of matrix rings II, Israel J. Math., 96(part A) (1996), 1-13.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
  • G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • A. W. Chatters, Matrices, idealisers and integer quaternions, J. Algebra, 150(1) (1992), 45-56.
  • A. W. Chatters, Nonisomorphic rings with isomorphic matrix rings, Proc. Edinburgh Math. Soc. (Ser. 2), 36(2) (1993), 339-348.
  • T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.
  • T. Y. Lam and A. Leroy, Recognition and computations of matrix rings, Israel J. Math., 96(part B) (1996), 379-397.
  • J. C. Robson, Recognition of matrix rings, Comm. Algebra, 19(7) (1991), 2113- 2124.
  • L. H. Rowen, Ring Theory: Student Edition, Academic Press, Inc., Boston, MA, 1991.
  • S. P. Smith, An example of a ring Morita equivalent to the Weyl algebra A1, J. Algebra, 73(2) (1981), 552-555.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Geir Agnarsson This is me

Samuel S. Mendelson This is me

Publication Date January 7, 2020
DOI https://doi.org/10.24330/ieja.662946
IZ https://izlik.org/JA37TT37TA
Published in Issue Year 2020 Volume: 27 Issue: 27

Cite

APA Agnarsson, G., & Mendelson, S. S. (2020). ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS. International Electronic Journal of Algebra, 27(27), 13-42. https://doi.org/10.24330/ieja.662946
AMA 1.Agnarsson G, Mendelson SS. ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS. IEJA. 2020;27(27):13-42. doi:10.24330/ieja.662946
Chicago Agnarsson, Geir, and Samuel S. Mendelson. 2020. “ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS”. International Electronic Journal of Algebra 27 (27): 13-42. https://doi.org/10.24330/ieja.662946.
EndNote Agnarsson G, Mendelson SS (January 1, 2020) ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS. International Electronic Journal of Algebra 27 27 13–42.
IEEE [1]G. Agnarsson and S. S. Mendelson, “ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS”, IEJA, vol. 27, no. 27, pp. 13–42, Jan. 2020, doi: 10.24330/ieja.662946.
ISNAD Agnarsson, Geir - Mendelson, Samuel S. “ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS”. International Electronic Journal of Algebra 27/27 (January 1, 2020): 13-42. https://doi.org/10.24330/ieja.662946.
JAMA 1.Agnarsson G, Mendelson SS. ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS. IEJA. 2020;27:13–42.
MLA Agnarsson, Geir, and Samuel S. Mendelson. “ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS”. International Electronic Journal of Algebra, vol. 27, no. 27, Jan. 2020, pp. 13-42, doi:10.24330/ieja.662946.
Vancouver 1.Agnarsson G, Mendelson SS. ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS. IEJA [Internet]. 2020 Jan. 1;27(27):13-42. Available from: https://izlik.org/JA37TT37TA