BibTex RIS Cite

MODULES WITH FINITELY MANY SUBMODULES

Year 2016, Volume: 19 Issue: 19, 119 - 131, 01.06.2016
https://doi.org/10.24330/ieja.266197

Abstract

We characterize ring extensions R ⊂ S having FCP (FIP), where
S is the idealization of some R-module. As a by-product we exhibit characterizations
of the modules that have finitely many submodules. Our tools
are minimal ring morphisms, while Artinian conditions on rings are ubiquitous.

Year 2016, Volume: 19 Issue: 19, 119 - 131, 01.06.2016
https://doi.org/10.24330/ieja.266197

Abstract

There are 0 citations in total.

Details

Subjects Mathematical Sciences
Other ID JA98VH47FN
Journal Section Articles
Authors

Gabriel Picavet This is me

Martine Picavet-l’hermitte This is me

Publication Date June 1, 2016
Published in Issue Year 2016 Volume: 19 Issue: 19

Cite

APA Picavet, G., & Picavet-l’hermitte, M. (2016). MODULES WITH FINITELY MANY SUBMODULES. International Electronic Journal of Algebra, 19(19), 119-131. https://doi.org/10.24330/ieja.266197
AMA Picavet G, Picavet-l’hermitte M. MODULES WITH FINITELY MANY SUBMODULES. IEJA. June 2016;19(19):119-131. doi:10.24330/ieja.266197
Chicago Picavet, Gabriel, and Martine Picavet-l’hermitte. “MODULES WITH FINITELY MANY SUBMODULES”. International Electronic Journal of Algebra 19, no. 19 (June 2016): 119-31. https://doi.org/10.24330/ieja.266197.
EndNote Picavet G, Picavet-l’hermitte M (June 1, 2016) MODULES WITH FINITELY MANY SUBMODULES. International Electronic Journal of Algebra 19 19 119–131.
IEEE G. Picavet and M. Picavet-l’hermitte, “MODULES WITH FINITELY MANY SUBMODULES”, IEJA, vol. 19, no. 19, pp. 119–131, 2016, doi: 10.24330/ieja.266197.
ISNAD Picavet, Gabriel - Picavet-l’hermitte, Martine. “MODULES WITH FINITELY MANY SUBMODULES”. International Electronic Journal of Algebra 19/19 (June 2016), 119-131. https://doi.org/10.24330/ieja.266197.
JAMA Picavet G, Picavet-l’hermitte M. MODULES WITH FINITELY MANY SUBMODULES. IEJA. 2016;19:119–131.
MLA Picavet, Gabriel and Martine Picavet-l’hermitte. “MODULES WITH FINITELY MANY SUBMODULES”. International Electronic Journal of Algebra, vol. 19, no. 19, 2016, pp. 119-31, doi:10.24330/ieja.266197.
Vancouver Picavet G, Picavet-l’hermitte M. MODULES WITH FINITELY MANY SUBMODULES. IEJA. 2016;19(19):119-31.

Cited By







On the Commutative Rings with At Most Two Proper Subrings
International Journal of Mathematics and Mathematical Sciences
David E. Dobbs
https://doi.org/10.1155/2016/6912360

Étale extensions with finitely many subextensions
Bollettino dell'Unione Matematica Italiana
Gabriel Picavet
https://doi.org/10.1007/s40574-016-0088-7