BibTex RIS Cite

CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS

Year 2014, Volume: 16 Issue: 16, 99 - 114, 01.12.2014
https://doi.org/10.24330/ieja.266230

Abstract

Let R be a (commutative integral) domain with quotient K; let
R0 be the integral closure of R (in K). Then each overring of R (inside K) is a
going-down domain if and only if R0 is a locally pseudo-valuation domain, T ⊆T0
satisfies going-down for every overring T of R, and tr. deg[VR0 (M)/M(R0)M :R0/M] ≤ 1 for every maximal ideal M of R0
(where VR0 (M) denotes the
valuation domain that is canonically associated to the pseudo-valuation domain
(R0)M). Additional equivalences are given in case R is locally finitedimensional.
Applications include the case where R is integrally closed or R
is not a Jaffard domain or R[X] is catenarian.

References

  • D. D. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math., 32 (1980), 362–384.
  • D. F. Anderson, A. Bouvier, D. E. Dobbs, M. Fontana and S. Kabbaj, On Jaffard domains, Exposition. Math., 6 (1988), 145–175.
  • A. Ayache, Integrally closed domains with treed overrings, Ric. Mat. 63(1) (2014), 93-100.
  • A. Ayache, M. Ben Nasr, O. Echi and N. Jarboui, Universally catenarian and going-down pairs of rings, Math. Z., 238 (2001), 695–731.
  • A. Ayache and P. J. Cahen, Anneaux v´erifiant absolument l’in´egalit´e ou la formule de la dimension, Boll. Un. Mat. Ital. B (7), 6 (1992), 39–65.
  • A. Ayache and N. Jarboui, An answer to a Dobbs conjecture about treed domains, J. Algebra, 320 (2008), 3720–3725.
  • A. Ayache, N. Jarboui and E. Massaoud, Pairs of domains where all inter- mediates domains are treed, Arab J. Sci. Eng., 36 (2011), 933–946.
  • E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D + M , Michigan Math. J., 20 (1973), 79–95.
  • M. Ben Nasr and N. Jarboui, Maximal non-Jaffard subrings of a field, Pub. Mat., 44 (2000), 157–175.
  • A. Bouvier, D. E. Dobbs and M. Fontana, Universally catenarian integral domains, Adv. Math., 72 (1988), 211–238.
  • A. Bouvier, D. E. Dobbs and M. Fontana, Two sufficient conditions for universal catenarity, Comm. Algebra, 15 (1987), 861–872.
  • R. D. Chatham and D. E. Dobbs, On pseudo-valuation domains whose over- rings are going-down domains, Houston J. Math., 28 (2002), 13–19.
  • D. E. Dobbs, On going-down for simple overrings, II, Comm. Algebra, 1 (1974), 439–458.
  • D. E. Dobbs, Ascent and descent of going-down rings for integral extensions, Bull. Austral. Math. Soc., 15 (1976), 253–264.
  • D. E. Dobbs, Divided rings and going-down, Pacific J. Math., 67 (1976), –363.
  • D. E. Dobbs, Coherence, ascent of going-down and pseudo-valuation do- mains, Houston J. Math., 4 (1978), 551–567.
  • D. E. Dobbs, On treed overrings and going-down domains, Rend. Mat., 7 (1987), 317–322.
  • D. E. Dobbs and M. Fontana, Locally pseudo-valuation domains, Ann. Mat. Pura Appl., 134(4) (1983), 147–168.
  • D. E. Dobbs and M. Fontana, Integral overrings of two-dimensional going- down domains, Proc. Amer. Math. Soc., 115(3) (1992), 655–662.
  • D. E. Dobbs, M. Fontana and I. J. Papick, Direct limits and going-down, Comment. Math. Univ. St. Paul., 31(2) (1982), 129–135.
  • D. E. Dobbs and I. J. Papick, On going-down for simple overrings, III, Proc. Amer. Math. Soc., 54 (1976), 35–38.
  • D. E. Dobbs and I. J. Papick, Going-down, a survey, Nieuw Arch. v. Wisk, (1978), 255–291.
  • M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl., 123 (1980), 331–355.
  • M. Fontana, Carr´es cart´esiens et anneaux de pseudo-valuation, Pub. Math. Univ. Lyon, 17 (1980), 57–95.
  • M. Fontana and E. Houston, On integral domains whose overrings are Ka- plansky ideal transforms, J. Pure Appl. Algebra, 163 (2001), 173–192.
  • R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
  • R. Gilmer and W. J. Heinzer, Intersections of quotient rings of an integral domain, J. Math. Kyoto Univ., 7 (1967), 133–150.
  • J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137–147.
  • J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, II, Houston. J. Math., 4 (1978), 199–207.
  • S. Malik and J. L. Mott, Strong S-domains, J. Pure Appl. Algebra, 28 (1983), 249–264.
  • S. McAdam, Simple going-down, J. London Math. Soc., 13 (1976), 167–173.
  • S. McAdam, Going down: ascent/descent, Comm. Algebra, 29 (2001), 5191–
  • I. J. Papick, Topologically defined classes of going-down domains, Trans. Amer. Math. Soc., 219 (1976), 1–37. Ahmed Ayache Faculty of Science Sana’a University
  • P.O. Box 12460, Sana’a, Yemen e-mail: aaayache@yahoo.com David E. Dobbs
  • Department of Mathematics University of Tennessee Knoxville, TN 37996-1320, U.S.A. e-mail: ddobbs1@utk.edu
Year 2014, Volume: 16 Issue: 16, 99 - 114, 01.12.2014
https://doi.org/10.24330/ieja.266230

Abstract

References

  • D. D. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math., 32 (1980), 362–384.
  • D. F. Anderson, A. Bouvier, D. E. Dobbs, M. Fontana and S. Kabbaj, On Jaffard domains, Exposition. Math., 6 (1988), 145–175.
  • A. Ayache, Integrally closed domains with treed overrings, Ric. Mat. 63(1) (2014), 93-100.
  • A. Ayache, M. Ben Nasr, O. Echi and N. Jarboui, Universally catenarian and going-down pairs of rings, Math. Z., 238 (2001), 695–731.
  • A. Ayache and P. J. Cahen, Anneaux v´erifiant absolument l’in´egalit´e ou la formule de la dimension, Boll. Un. Mat. Ital. B (7), 6 (1992), 39–65.
  • A. Ayache and N. Jarboui, An answer to a Dobbs conjecture about treed domains, J. Algebra, 320 (2008), 3720–3725.
  • A. Ayache, N. Jarboui and E. Massaoud, Pairs of domains where all inter- mediates domains are treed, Arab J. Sci. Eng., 36 (2011), 933–946.
  • E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D + M , Michigan Math. J., 20 (1973), 79–95.
  • M. Ben Nasr and N. Jarboui, Maximal non-Jaffard subrings of a field, Pub. Mat., 44 (2000), 157–175.
  • A. Bouvier, D. E. Dobbs and M. Fontana, Universally catenarian integral domains, Adv. Math., 72 (1988), 211–238.
  • A. Bouvier, D. E. Dobbs and M. Fontana, Two sufficient conditions for universal catenarity, Comm. Algebra, 15 (1987), 861–872.
  • R. D. Chatham and D. E. Dobbs, On pseudo-valuation domains whose over- rings are going-down domains, Houston J. Math., 28 (2002), 13–19.
  • D. E. Dobbs, On going-down for simple overrings, II, Comm. Algebra, 1 (1974), 439–458.
  • D. E. Dobbs, Ascent and descent of going-down rings for integral extensions, Bull. Austral. Math. Soc., 15 (1976), 253–264.
  • D. E. Dobbs, Divided rings and going-down, Pacific J. Math., 67 (1976), –363.
  • D. E. Dobbs, Coherence, ascent of going-down and pseudo-valuation do- mains, Houston J. Math., 4 (1978), 551–567.
  • D. E. Dobbs, On treed overrings and going-down domains, Rend. Mat., 7 (1987), 317–322.
  • D. E. Dobbs and M. Fontana, Locally pseudo-valuation domains, Ann. Mat. Pura Appl., 134(4) (1983), 147–168.
  • D. E. Dobbs and M. Fontana, Integral overrings of two-dimensional going- down domains, Proc. Amer. Math. Soc., 115(3) (1992), 655–662.
  • D. E. Dobbs, M. Fontana and I. J. Papick, Direct limits and going-down, Comment. Math. Univ. St. Paul., 31(2) (1982), 129–135.
  • D. E. Dobbs and I. J. Papick, On going-down for simple overrings, III, Proc. Amer. Math. Soc., 54 (1976), 35–38.
  • D. E. Dobbs and I. J. Papick, Going-down, a survey, Nieuw Arch. v. Wisk, (1978), 255–291.
  • M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl., 123 (1980), 331–355.
  • M. Fontana, Carr´es cart´esiens et anneaux de pseudo-valuation, Pub. Math. Univ. Lyon, 17 (1980), 57–95.
  • M. Fontana and E. Houston, On integral domains whose overrings are Ka- plansky ideal transforms, J. Pure Appl. Algebra, 163 (2001), 173–192.
  • R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
  • R. Gilmer and W. J. Heinzer, Intersections of quotient rings of an integral domain, J. Math. Kyoto Univ., 7 (1967), 133–150.
  • J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137–147.
  • J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, II, Houston. J. Math., 4 (1978), 199–207.
  • S. Malik and J. L. Mott, Strong S-domains, J. Pure Appl. Algebra, 28 (1983), 249–264.
  • S. McAdam, Simple going-down, J. London Math. Soc., 13 (1976), 167–173.
  • S. McAdam, Going down: ascent/descent, Comm. Algebra, 29 (2001), 5191–
  • I. J. Papick, Topologically defined classes of going-down domains, Trans. Amer. Math. Soc., 219 (1976), 1–37. Ahmed Ayache Faculty of Science Sana’a University
  • P.O. Box 12460, Sana’a, Yemen e-mail: aaayache@yahoo.com David E. Dobbs
  • Department of Mathematics University of Tennessee Knoxville, TN 37996-1320, U.S.A. e-mail: ddobbs1@utk.edu
There are 35 citations in total.

Details

Other ID JA73MB53BC
Journal Section Articles
Authors

Ahmed Ayache This is me

David E. Dobbs This is me

Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 16 Issue: 16

Cite

APA Ayache, A., & Dobbs, D. E. (2014). CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS. International Electronic Journal of Algebra, 16(16), 99-114. https://doi.org/10.24330/ieja.266230
AMA Ayache A, Dobbs DE. CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS. IEJA. December 2014;16(16):99-114. doi:10.24330/ieja.266230
Chicago Ayache, Ahmed, and David E. Dobbs. “CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS”. International Electronic Journal of Algebra 16, no. 16 (December 2014): 99-114. https://doi.org/10.24330/ieja.266230.
EndNote Ayache A, Dobbs DE (December 1, 2014) CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS. International Electronic Journal of Algebra 16 16 99–114.
IEEE A. Ayache and D. E. Dobbs, “CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS”, IEJA, vol. 16, no. 16, pp. 99–114, 2014, doi: 10.24330/ieja.266230.
ISNAD Ayache, Ahmed - Dobbs, David E. “CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS”. International Electronic Journal of Algebra 16/16 (December 2014), 99-114. https://doi.org/10.24330/ieja.266230.
JAMA Ayache A, Dobbs DE. CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS. IEJA. 2014;16:99–114.
MLA Ayache, Ahmed and David E. Dobbs. “CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS”. International Electronic Journal of Algebra, vol. 16, no. 16, 2014, pp. 99-114, doi:10.24330/ieja.266230.
Vancouver Ayache A, Dobbs DE. CHARACTERIZATIONS OF THE INTEGRAL DOMAINS WHOSE OVERRINGS ARE GOING-DOWN DOMAINS. IEJA. 2014;16(16):99-114.