BibTex RIS Cite

ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS

Year 2013, Volume: 13 Issue: 13, 23 - 39, 01.06.2013

Abstract

Let M be a Γ-ring and σ, τ be endomorphisms of M. An additive
mapping d : M −→ M is called a (σ, τ)-derivation if d(xαy) =
d(x)ασ(y) + τ(x)αd(y) holds for all x, y ∈ M and α ∈ Γ. An additive mapping
F : M −→ M is called a generalized (σ, τ)-derivation if there exists a (σ, τ)-
derivation d : M −→ M such that F(xαy) = F(x)ασ(y) + τ(x)αd(y) holds
for all x, y ∈ M and α ∈ Γ. In this paper, some known results on orthogonal
derivations and orthogonal generalized derivations of semiprime Γ-rings are
extended to orthogonal (σ, τ)-derivations and orthogonal generalized (σ, τ)-
derivations. Moreover, we present some examples which demonstrate that the
restrictions imposed on the hypotheses of some of our results are not superfluous.

References

  • N. Arga¸c, A. Kaya and A. Kisir, (σ, τ )-derivations in prime rings, Math. J. Okayama Univ., 29 (1987), 173–177.
  • N. Arga¸c, A. Nakajima and E. Alba¸s, On orthogonal generalized derivations of semiprime rings, Turkish J. Math., 28(2) (2004), 185–194.
  • M. Ashraf and M. R. Jamal, Orthogonal derivations in Γ-rings, Advances in Algebra, 3(1) (2010), 1–6.
  • M. Ashraf and M. R. Jamal, Orthogonal Generalized derivations in Γ-rings, Aligarh Bull. Math., 29(1) (2010), 41–46.
  • M. Ashraf, A. Ali and Shakir Ali, On Lie ideals and generalized (θ, φ)- derivations in prime rings, Comm. Algebra, 32(8) (2004), 2977–2985.
  • W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18(3) (1966), –422.
  • M. Breˇsar and J. Vukman, Orthogonal derivation and an extension of a theorem of Posner, Rad. Mat., 5(2) (1989), 237–246.
  • Y. C¸ even and M. A. ¨Ozt¨urk, On Jordan generalized derivation in gamma rings, Hacet. J. Math. Stat., 33 (2004), 11–14.
  • F. J. Jing, On derivations of Γ-rings, Qufu Shifan Daxue Xuebao Ziran Kexue Ban, 13(4) (1987), 159–161.
  • N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), –89.
  • M. A. ¨Ozt¨urk, M. Sapanci, M. Soyt¨urk and K. H. Kim, Symmetric bi-derivation on prime Gamma-rings, Sci. Math., 3(2) (2000), 273–281.
  • M. S. Yenig¨ul and N. Arga¸c, On ideals and orthogonal derivations, J. of South- west China Normal Univ., 20 (1995), 137–140.
  • Shakir Ali, Mohammad Salahuddin Khan Department of Mathematics Aligarh Muslim University Aligarh-202002, India e-mails: shakir.ali.mm@amu.ac.in (Shakir Ali) salahuddinkhan50@gmail.com (Mohammad Salahuddin Khan)
Year 2013, Volume: 13 Issue: 13, 23 - 39, 01.06.2013

Abstract

References

  • N. Arga¸c, A. Kaya and A. Kisir, (σ, τ )-derivations in prime rings, Math. J. Okayama Univ., 29 (1987), 173–177.
  • N. Arga¸c, A. Nakajima and E. Alba¸s, On orthogonal generalized derivations of semiprime rings, Turkish J. Math., 28(2) (2004), 185–194.
  • M. Ashraf and M. R. Jamal, Orthogonal derivations in Γ-rings, Advances in Algebra, 3(1) (2010), 1–6.
  • M. Ashraf and M. R. Jamal, Orthogonal Generalized derivations in Γ-rings, Aligarh Bull. Math., 29(1) (2010), 41–46.
  • M. Ashraf, A. Ali and Shakir Ali, On Lie ideals and generalized (θ, φ)- derivations in prime rings, Comm. Algebra, 32(8) (2004), 2977–2985.
  • W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18(3) (1966), –422.
  • M. Breˇsar and J. Vukman, Orthogonal derivation and an extension of a theorem of Posner, Rad. Mat., 5(2) (1989), 237–246.
  • Y. C¸ even and M. A. ¨Ozt¨urk, On Jordan generalized derivation in gamma rings, Hacet. J. Math. Stat., 33 (2004), 11–14.
  • F. J. Jing, On derivations of Γ-rings, Qufu Shifan Daxue Xuebao Ziran Kexue Ban, 13(4) (1987), 159–161.
  • N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), –89.
  • M. A. ¨Ozt¨urk, M. Sapanci, M. Soyt¨urk and K. H. Kim, Symmetric bi-derivation on prime Gamma-rings, Sci. Math., 3(2) (2000), 273–281.
  • M. S. Yenig¨ul and N. Arga¸c, On ideals and orthogonal derivations, J. of South- west China Normal Univ., 20 (1995), 137–140.
  • Shakir Ali, Mohammad Salahuddin Khan Department of Mathematics Aligarh Muslim University Aligarh-202002, India e-mails: shakir.ali.mm@amu.ac.in (Shakir Ali) salahuddinkhan50@gmail.com (Mohammad Salahuddin Khan)
There are 13 citations in total.

Details

Other ID JA26EF79FA
Journal Section Articles
Authors

Shakir Ali This is me

Mohammad Salahuddin Khan This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 13 Issue: 13

Cite

APA Ali, S., & Khan, M. S. (2013). ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS. International Electronic Journal of Algebra, 13(13), 23-39.
AMA Ali S, Khan MS. ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS. IEJA. June 2013;13(13):23-39.
Chicago Ali, Shakir, and Mohammad Salahuddin Khan. “ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS”. International Electronic Journal of Algebra 13, no. 13 (June 2013): 23-39.
EndNote Ali S, Khan MS (June 1, 2013) ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS. International Electronic Journal of Algebra 13 13 23–39.
IEEE S. Ali and M. S. Khan, “ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS”, IEJA, vol. 13, no. 13, pp. 23–39, 2013.
ISNAD Ali, Shakir - Khan, Mohammad Salahuddin. “ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS”. International Electronic Journal of Algebra 13/13 (June 2013), 23-39.
JAMA Ali S, Khan MS. ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS. IEJA. 2013;13:23–39.
MLA Ali, Shakir and Mohammad Salahuddin Khan. “ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS”. International Electronic Journal of Algebra, vol. 13, no. 13, 2013, pp. 23-39.
Vancouver Ali S, Khan MS. ON ORTHOGONAL (σ, τ )-DERIVATIONS IN SEMIPRIME Γ-RINGS. IEJA. 2013;13(13):23-39.