INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX
Year 2013,
Volume: 13 Issue: 13, 76 - 90, 01.06.2013
M. Afkhami
F. Khosh-ahang
Abstract
In this note, firstly we introduce the intersection graph G(∆) of
a simplicial complex ∆, as a graph whose vertices are all facets of ∆ and two
distinct vertices are adjacent if they have non-empty intersection. We investigate
some properties of this graph and simplicial complexes. Moreover, we
apply this graph for finding a couple of upper and lower bounds for the vertex
covering number of ∆. Also, we introduce and study the intersection ideal of
a simplicial complex.
References
- M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commu- tative ring, Southeast Asian Bull. Math., 35 (2011), 753–762.
- D. D. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706–2719.
- I. Beck, Coloring of commutative rings, J. Algebra, 116 (1998), 208–226.
- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., New York, 1976.
- J. Bosak, The graphs of semigroups, Theory of Graphs and its Applica- tions, (Proc. Sympos. Smolenice, 1963), Publ. House Czechoslovak Acad. Sci., Prague, (1964), 119–125.
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Vol. 39, Cambridge Studies in Advanced Mathematics, Revised Edition, 1998.
- M. Capobianco and J. Molluzzo, Examples and Counterexamples in Graph Theory, New York: North-Holland, 1978.
- I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309(17) (2009), 5381–5392.
- P. Chen, A kind of graph struture of rings, Algebra Colloq., 10(2) (2003), –238.
- B. Csakany and G. Pollak, The graph of subgroups of a finite group, Czechoslo- vak Math. J., 19(94) (1969), 241–247.
- B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cam- bridge University Press, 2002.
- S. Faridi, Simplicial trees are sequentially Cohen-Macaulay, J. Pure Appl. Al- gebra, 190 (2004), 121–136.
- S. Faridi, Cohen-Macaulay properties of square-free monomial ideals, J. Com- bin. Theory Ser. A, 109(2) (2005), 299–329.
- S. Faridi and M. Caboara and P. Selinger, Simplicial cycles and the computa- tion of simplicial trees, J. Symbolic Comput., 42 (2007), 74–88.
- M. Gardner and F. Harary, Characterization of (r, s)-adjacency graphs of com- plexes, Proc. Amer. Math. Soc., 83(1) (1981), 211–214.
- S. H. Jafari and N. Jafari Rad, Planarity of intersection graphs of ideals of rings, Int. Electron. J. Algebra, 8 (2010), 161–166.
- T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications, 2, Philadelphia: So- ciety for Industrial and Applied Mathematics, 1999.
- J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 2001.
- B. Zelinka, Intersection graphs of finite abelian groups, Czechoslovak Math. J., (100) (1975), 171–174. Mojgan Afkhami
- Department of Mathematics University of Neyshabur P.O.Box 91136-899, Neyshabur, Iran e-mail: mojgan.afkhami@yahoo.com Fahimeh Khosh-Ahang
- Department of Mathematics Ilam University P.O.Box 69315-516, Ilam, Iran e-mail: fahime khosh@yahoo.com
Year 2013,
Volume: 13 Issue: 13, 76 - 90, 01.06.2013
M. Afkhami
F. Khosh-ahang
References
- M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commu- tative ring, Southeast Asian Bull. Math., 35 (2011), 753–762.
- D. D. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706–2719.
- I. Beck, Coloring of commutative rings, J. Algebra, 116 (1998), 208–226.
- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., New York, 1976.
- J. Bosak, The graphs of semigroups, Theory of Graphs and its Applica- tions, (Proc. Sympos. Smolenice, 1963), Publ. House Czechoslovak Acad. Sci., Prague, (1964), 119–125.
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Vol. 39, Cambridge Studies in Advanced Mathematics, Revised Edition, 1998.
- M. Capobianco and J. Molluzzo, Examples and Counterexamples in Graph Theory, New York: North-Holland, 1978.
- I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309(17) (2009), 5381–5392.
- P. Chen, A kind of graph struture of rings, Algebra Colloq., 10(2) (2003), –238.
- B. Csakany and G. Pollak, The graph of subgroups of a finite group, Czechoslo- vak Math. J., 19(94) (1969), 241–247.
- B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cam- bridge University Press, 2002.
- S. Faridi, Simplicial trees are sequentially Cohen-Macaulay, J. Pure Appl. Al- gebra, 190 (2004), 121–136.
- S. Faridi, Cohen-Macaulay properties of square-free monomial ideals, J. Com- bin. Theory Ser. A, 109(2) (2005), 299–329.
- S. Faridi and M. Caboara and P. Selinger, Simplicial cycles and the computa- tion of simplicial trees, J. Symbolic Comput., 42 (2007), 74–88.
- M. Gardner and F. Harary, Characterization of (r, s)-adjacency graphs of com- plexes, Proc. Amer. Math. Soc., 83(1) (1981), 211–214.
- S. H. Jafari and N. Jafari Rad, Planarity of intersection graphs of ideals of rings, Int. Electron. J. Algebra, 8 (2010), 161–166.
- T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications, 2, Philadelphia: So- ciety for Industrial and Applied Mathematics, 1999.
- J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 2001.
- B. Zelinka, Intersection graphs of finite abelian groups, Czechoslovak Math. J., (100) (1975), 171–174. Mojgan Afkhami
- Department of Mathematics University of Neyshabur P.O.Box 91136-899, Neyshabur, Iran e-mail: mojgan.afkhami@yahoo.com Fahimeh Khosh-Ahang
- Department of Mathematics Ilam University P.O.Box 69315-516, Ilam, Iran e-mail: fahime khosh@yahoo.com