Research Article
BibTex RIS Cite

BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS

Year 2012, Volume: 12 Issue: 12, 12 - 16, 01.12.2012

Abstract

This article is a contribution to the study of the automorphism
groups of 2 − (v, k, 1) designs. Let D be 2 − (v, 17, 1) design, G ≤ Aut(D) be
block transitive and point primitive. If G is unsolvable, then Soc(G), the socle
of G, is not 2G2(q).

References

  • F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag transitive automorphism groups, Geom. Dedicata, (1990), 89-94.
  • P. C. Calpham, Steiner system with block transitive automorphism groups, Discrete Math., 14 (1976), 121-131.
  • A. Camina and J. Siemons, Block-transitive automorphism groups of (v, k, 1) design, J. Comb. Theory A, 51 (1989), 268-276.
  • G. G. Han and H. L. Li, Unsolvable block transitive automorphism groups of − (v, 5, 1) designs, J. Comb. Theory A, 114 (2007),77-96.
  • G. G. Han and C. G. Ma, Block transitive 2 − (v, 11, 1) design and classical simple groups, Adv Math., 39 (3)(2010), 319-330.
  • P. B. Kleidman, The maximal subgroups of the Chevally groups2G2(q) with q odd, the Ree groups2G2(q), and their automorphism groups, J. Algebra, 117 (1988), 30-71.
  • H. Li, On block-transitive 2 − (v, 4, 1) designs, J. Combin. Theory Ser. A, 69 (1995), 115-124.
  • M. Liebeck and J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. Lond. Math. Soc., 55 (1987), 299-330.
  • W. J. Liu, Block transitive 2 − (v, k, 1) designs, Ph.D. Thesis, Zhejiang Uni- versity, 1998.
  • R. Ree, A family of simple groups associated with the simple Lie algebra of type (G2), Amer. J. Math., 83 (1961), 432-462.
  • W. Tong and H. L. Li, Solvable block transitive automorphism groups of 2 − (v, 5, 1) designs, Discrete Math., 260 (2003), 267-273. Shaojun Dai
  • Department of Mathematics Tianjin Polytechnic University No. 399 Binshuixi Road, Xiqing District Tianjin, P.R.China e-mail: daishaojun@tjpu.edu.cn Kun Zhao School of Science, Jiamusi University Jiamusi, Heilongjiang, P.R.China e-mail: zhaokun197808@126.com
Year 2012, Volume: 12 Issue: 12, 12 - 16, 01.12.2012

Abstract

References

  • F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag transitive automorphism groups, Geom. Dedicata, (1990), 89-94.
  • P. C. Calpham, Steiner system with block transitive automorphism groups, Discrete Math., 14 (1976), 121-131.
  • A. Camina and J. Siemons, Block-transitive automorphism groups of (v, k, 1) design, J. Comb. Theory A, 51 (1989), 268-276.
  • G. G. Han and H. L. Li, Unsolvable block transitive automorphism groups of − (v, 5, 1) designs, J. Comb. Theory A, 114 (2007),77-96.
  • G. G. Han and C. G. Ma, Block transitive 2 − (v, 11, 1) design and classical simple groups, Adv Math., 39 (3)(2010), 319-330.
  • P. B. Kleidman, The maximal subgroups of the Chevally groups2G2(q) with q odd, the Ree groups2G2(q), and their automorphism groups, J. Algebra, 117 (1988), 30-71.
  • H. Li, On block-transitive 2 − (v, 4, 1) designs, J. Combin. Theory Ser. A, 69 (1995), 115-124.
  • M. Liebeck and J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. Lond. Math. Soc., 55 (1987), 299-330.
  • W. J. Liu, Block transitive 2 − (v, k, 1) designs, Ph.D. Thesis, Zhejiang Uni- versity, 1998.
  • R. Ree, A family of simple groups associated with the simple Lie algebra of type (G2), Amer. J. Math., 83 (1961), 432-462.
  • W. Tong and H. L. Li, Solvable block transitive automorphism groups of 2 − (v, 5, 1) designs, Discrete Math., 260 (2003), 267-273. Shaojun Dai
  • Department of Mathematics Tianjin Polytechnic University No. 399 Binshuixi Road, Xiqing District Tianjin, P.R.China e-mail: daishaojun@tjpu.edu.cn Kun Zhao School of Science, Jiamusi University Jiamusi, Heilongjiang, P.R.China e-mail: zhaokun197808@126.com
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Other ID JA78AB84GU
Journal Section Articles
Authors

Shaojun Dai This is me

Kun Zhao This is me

Publication Date December 1, 2012
Published in Issue Year 2012 Volume: 12 Issue: 12

Cite

APA Dai, S., & Zhao, K. (2012). BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS. International Electronic Journal of Algebra, 12(12), 12-16.
AMA Dai S, Zhao K. BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS. IEJA. December 2012;12(12):12-16.
Chicago Dai, Shaojun, and Kun Zhao. “BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS”. International Electronic Journal of Algebra 12, no. 12 (December 2012): 12-16.
EndNote Dai S, Zhao K (December 1, 2012) BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS. International Electronic Journal of Algebra 12 12 12–16.
IEEE S. Dai and K. Zhao, “BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS”, IEJA, vol. 12, no. 12, pp. 12–16, 2012.
ISNAD Dai, Shaojun - Zhao, Kun. “BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS”. International Electronic Journal of Algebra 12/12 (December 2012), 12-16.
JAMA Dai S, Zhao K. BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS. IEJA. 2012;12:12–16.
MLA Dai, Shaojun and Kun Zhao. “BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS”. International Electronic Journal of Algebra, vol. 12, no. 12, 2012, pp. 12-16.
Vancouver Dai S, Zhao K. BLOCK TRANSITIVE 2 − (v, 17, 1) DESIGNS AND REE GROUPS. IEJA. 2012;12(12):12-6.