BibTex RIS Cite

SUBLATTICES OF R-TORS INDUCED BY A-MODULES

Year 2012, Volume: 12 Issue: 12, 17 - 36, 01.12.2012

Abstract

This article is concerned with the study of the sublattice gen (ρ)
of R-tors, where ρ is some arbitrary but fixed member of R-tors. We use the
concept of the ρ-A-module (M is a ρ-A-module, if M is ρ-torsion free and ρ
∨ξ ({M}) is an atom in gen (ρ)) and we define an equivalence relation in the
sublattice gen (ρ). The partition associated to this equivalence relation allows
us to get interesting information about this sublattice. As an application, we
obtain new characterizations of ρ-artinian rings, ρ-semiartinian rings (a ring
R is ρ-semiartinian if every non-zero ρ-torsion free R-module contains a τ-
cocritical submodule) and rings with ρ-atomic dimension (rings such that for
all σ ∈ gen (ρ) with σ 6= χ, there exists a σ-A-module).

References

  • G. Aguilar and F. Raggi, Sublattices of R-tors induced by the skeleton, Comm. Algebra, 21(4) (1993), 1347-1358.
  • E. Barbut and W. Brandal, Localizations of torsion theories, Pacific J. Math., (1) (1983)27-37.
  • J. Bueso and P. Jara, Semiartinian modules relative to a torsion theory, Comm. Algebra, 13(3) (1985), 631-644.
  • J. Castro, J. R´ıos, and M. Teply, Torsion theoretic dimensions and relative Gabriel correspondence, J. Pure Appl. Algebra, 178 (1) (2003), 101-114.
  • J. Castro, F. Raggi, J. R´ıos and J. Van den Berg, On the atomic dimension in module categories, Comm. Algebra, 33 (2005), 4679-4692.
  • J. Castro, F. Raggi, and J. R´ıos, Decisive dimension and other related torsion theoretic dimensions, J. Pure Appl. Algebra, 209 (2007), 139-149
  • J. Golan, Torsion Theories, Longman Scientific & Technical, Harlow, 1986.
  • J. Golan, On the Cantor-Bendixon-Simmons filtration of a torsion theory, Comm. Algebra, 16(4) (1988), 681-688.
  • J. Golan and H. Simmons, Derivatives, Nuclei and Dimensions on the Frame of Torsion Theories, Longman Scientific and Technical , Harlow, 1988.
  • W.J. Lewis, The spectrum of a ring as a partially ordered set, J. Algebra, 25 (1973), 419-434.
  • R. Miller and M. Teply, The descending chain condition relative to a torsion theory, Pacific J. Math, 83 (1979), 207-219.
  • C. Nastasescu, Modules injectifs de type fini par rapport a une topologie addi- tive, Comm. Algebra, 9 (1981), 67-79
  • B. Stenstr¨om, Rings of Quotients, Die Grundlehren der Math. Wiss. in Eizeld, Vol 217, Springer, Berlin, 1975.
  • A.M. Viola-Prioli and J. E. Viola-Prioli, Rings whose kernel functors are lin- early ordered, Pacific J. Math., 132(1) (1988), 21-34. Jaime Castro P´erez
  • Departamento de Matem´aticas Instituto Tecnol´ogico y de Estudios Superiores de Monterrey Calle del Puente 222, Tlalpan M´exico, D.F. M´exico e-mail: jcastrop@itesm.mx Gerardo Aguilar S´anchez Departamento de F´ısica y Matem´aticas Divisi´on de Ingenier´ıa y Arquitectura Tecnol´ogico de Monterrey Campus Ciudad de M´exico M´exico e-mail: gerardo.aguilar@itesm.mx
Year 2012, Volume: 12 Issue: 12, 17 - 36, 01.12.2012

Abstract

References

  • G. Aguilar and F. Raggi, Sublattices of R-tors induced by the skeleton, Comm. Algebra, 21(4) (1993), 1347-1358.
  • E. Barbut and W. Brandal, Localizations of torsion theories, Pacific J. Math., (1) (1983)27-37.
  • J. Bueso and P. Jara, Semiartinian modules relative to a torsion theory, Comm. Algebra, 13(3) (1985), 631-644.
  • J. Castro, J. R´ıos, and M. Teply, Torsion theoretic dimensions and relative Gabriel correspondence, J. Pure Appl. Algebra, 178 (1) (2003), 101-114.
  • J. Castro, F. Raggi, J. R´ıos and J. Van den Berg, On the atomic dimension in module categories, Comm. Algebra, 33 (2005), 4679-4692.
  • J. Castro, F. Raggi, and J. R´ıos, Decisive dimension and other related torsion theoretic dimensions, J. Pure Appl. Algebra, 209 (2007), 139-149
  • J. Golan, Torsion Theories, Longman Scientific & Technical, Harlow, 1986.
  • J. Golan, On the Cantor-Bendixon-Simmons filtration of a torsion theory, Comm. Algebra, 16(4) (1988), 681-688.
  • J. Golan and H. Simmons, Derivatives, Nuclei and Dimensions on the Frame of Torsion Theories, Longman Scientific and Technical , Harlow, 1988.
  • W.J. Lewis, The spectrum of a ring as a partially ordered set, J. Algebra, 25 (1973), 419-434.
  • R. Miller and M. Teply, The descending chain condition relative to a torsion theory, Pacific J. Math, 83 (1979), 207-219.
  • C. Nastasescu, Modules injectifs de type fini par rapport a une topologie addi- tive, Comm. Algebra, 9 (1981), 67-79
  • B. Stenstr¨om, Rings of Quotients, Die Grundlehren der Math. Wiss. in Eizeld, Vol 217, Springer, Berlin, 1975.
  • A.M. Viola-Prioli and J. E. Viola-Prioli, Rings whose kernel functors are lin- early ordered, Pacific J. Math., 132(1) (1988), 21-34. Jaime Castro P´erez
  • Departamento de Matem´aticas Instituto Tecnol´ogico y de Estudios Superiores de Monterrey Calle del Puente 222, Tlalpan M´exico, D.F. M´exico e-mail: jcastrop@itesm.mx Gerardo Aguilar S´anchez Departamento de F´ısica y Matem´aticas Divisi´on de Ingenier´ıa y Arquitectura Tecnol´ogico de Monterrey Campus Ciudad de M´exico M´exico e-mail: gerardo.aguilar@itesm.mx
There are 15 citations in total.

Details

Other ID JA57RV45DR
Journal Section Articles
Authors

Jaime Castro Pérez This is me

Gerardo Aguilar Sánchez This is me

Publication Date December 1, 2012
Published in Issue Year 2012 Volume: 12 Issue: 12

Cite

APA Pérez, J. C., & Sánchez, G. A. (2012). SUBLATTICES OF R-TORS INDUCED BY A-MODULES. International Electronic Journal of Algebra, 12(12), 17-36.
AMA Pérez JC, Sánchez GA. SUBLATTICES OF R-TORS INDUCED BY A-MODULES. IEJA. December 2012;12(12):17-36.
Chicago Pérez, Jaime Castro, and Gerardo Aguilar Sánchez. “SUBLATTICES OF R-TORS INDUCED BY A-MODULES”. International Electronic Journal of Algebra 12, no. 12 (December 2012): 17-36.
EndNote Pérez JC, Sánchez GA (December 1, 2012) SUBLATTICES OF R-TORS INDUCED BY A-MODULES. International Electronic Journal of Algebra 12 12 17–36.
IEEE J. C. Pérez and G. A. Sánchez, “SUBLATTICES OF R-TORS INDUCED BY A-MODULES”, IEJA, vol. 12, no. 12, pp. 17–36, 2012.
ISNAD Pérez, Jaime Castro - Sánchez, Gerardo Aguilar. “SUBLATTICES OF R-TORS INDUCED BY A-MODULES”. International Electronic Journal of Algebra 12/12 (December 2012), 17-36.
JAMA Pérez JC, Sánchez GA. SUBLATTICES OF R-TORS INDUCED BY A-MODULES. IEJA. 2012;12:17–36.
MLA Pérez, Jaime Castro and Gerardo Aguilar Sánchez. “SUBLATTICES OF R-TORS INDUCED BY A-MODULES”. International Electronic Journal of Algebra, vol. 12, no. 12, 2012, pp. 17-36.
Vancouver Pérez JC, Sánchez GA. SUBLATTICES OF R-TORS INDUCED BY A-MODULES. IEJA. 2012;12(12):17-36.