An integral domain R is a GCD-Bezout domain if the Bezout
identity holds for any finite set of nonzero elements of R whose gcd exists.
Such domains are characterized as the DW-domains having the PSP-property.
Using the notion of primitive and superprimitive ideals, we define a (semi)star
operation, the q-operation, which is closely related to the w-operation and the
p-operation introduced by Anderson. We use q-operation to characterize the
GCD-Bezout domains and study various properties of these domains.
J. Arnold and P. Sheldon, Integral Domains that satisfy Gauss’s Lemma, Michi- gan Math. J., 22 (1975), 39–51.
D.F. Anderson, Integral v-ideals, Glasgow Math. J., 22 (1981), 167–172.
A. Bouvier, Le Groupe des Classes d’un anneau int´egre, IV Congr`es national des Soci´et´es Savantes, Brest, 107 (1982), 85–92.
S. El Baghdadi and S. Gabelli, w-divisorial domains, J. Algebra, 285(1) (2005), –355.
M. Fontana and S. Gabelli, Pr¨ufer domains with class group generated by the classes of the invertible maximal ideals, Comm. Algebra, 25(12) (1997), 3993–
M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra, 181(3) (1996), 803–835.
M. Fontana and J. Huckaba, Localizing systems and semistar operations, Non- Noetherian Commutative Ring Theory, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000, 169–197.
S. Gabelli and F. Tartarone, On the class group of integer-valued polynomial rings over Krull domains, J. Pure Appl. Algebra, 149 (2000), 47–67.
R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972; rep.
Queen’s Papers in Pure and Applied Mathematics, Vol. 90, Queen’s University, Kingston, 1992.
S. Glaz and W.V. Vasconcelos, Flat ideals. II, Manuscripta Math., 22(4) (1977), 325–341.
B.G. Kang, Pr¨ufer v-multiplication domains and the ring R[X]Nv, J. Algebra, (1) (1989), 151–170.
I. Kaplansky, Commutative Rings, Rev. ed. University of Chicago Press, Chicago and London, 1974.
K.A. Loper, Two Pr¨ufer domain counterexamples, J. Algebra, 221(2) (1999), –643.
A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Algebra, (5) (2005), 1345–1355.
A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ., 17 (1994), 1–21.
G. Picozza and F. Tartarone, When the semistar operation ˜? is the identity, Comm. Algebra, 36 (2008), 1954–1975. Mi Hee Park
Department of Mathematics Chung-Ang University Seoul 156-756, Korea e-mail: mhpark@cau.ac.kr Francesca Tartarone Dipartimento di Matematica Universit`a degli studi Roma Tre Largo San Leonardo Murialdo , 00146 Roma, Italy e-mail: tfrance@mat.uniroma3.it
Year 2012,
Volume: 12 Issue: 12, 53 - 74, 01.12.2012
J. Arnold and P. Sheldon, Integral Domains that satisfy Gauss’s Lemma, Michi- gan Math. J., 22 (1975), 39–51.
D.F. Anderson, Integral v-ideals, Glasgow Math. J., 22 (1981), 167–172.
A. Bouvier, Le Groupe des Classes d’un anneau int´egre, IV Congr`es national des Soci´et´es Savantes, Brest, 107 (1982), 85–92.
S. El Baghdadi and S. Gabelli, w-divisorial domains, J. Algebra, 285(1) (2005), –355.
M. Fontana and S. Gabelli, Pr¨ufer domains with class group generated by the classes of the invertible maximal ideals, Comm. Algebra, 25(12) (1997), 3993–
M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra, 181(3) (1996), 803–835.
M. Fontana and J. Huckaba, Localizing systems and semistar operations, Non- Noetherian Commutative Ring Theory, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000, 169–197.
S. Gabelli and F. Tartarone, On the class group of integer-valued polynomial rings over Krull domains, J. Pure Appl. Algebra, 149 (2000), 47–67.
R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972; rep.
Queen’s Papers in Pure and Applied Mathematics, Vol. 90, Queen’s University, Kingston, 1992.
S. Glaz and W.V. Vasconcelos, Flat ideals. II, Manuscripta Math., 22(4) (1977), 325–341.
B.G. Kang, Pr¨ufer v-multiplication domains and the ring R[X]Nv, J. Algebra, (1) (1989), 151–170.
I. Kaplansky, Commutative Rings, Rev. ed. University of Chicago Press, Chicago and London, 1974.
K.A. Loper, Two Pr¨ufer domain counterexamples, J. Algebra, 221(2) (1999), –643.
A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Algebra, (5) (2005), 1345–1355.
A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ., 17 (1994), 1–21.
G. Picozza and F. Tartarone, When the semistar operation ˜? is the identity, Comm. Algebra, 36 (2008), 1954–1975. Mi Hee Park
Department of Mathematics Chung-Ang University Seoul 156-756, Korea e-mail: mhpark@cau.ac.kr Francesca Tartarone Dipartimento di Matematica Universit`a degli studi Roma Tre Largo San Leonardo Murialdo , 00146 Roma, Italy e-mail: tfrance@mat.uniroma3.it
Park, M. H., & Tartarone, F. (2012). DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. International Electronic Journal of Algebra, 12(12), 53-74.
AMA
Park MH, Tartarone F. DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. IEJA. December 2012;12(12):53-74.
Chicago
Park, Mi Hee, and Francesca Tartarone. “DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS”. International Electronic Journal of Algebra 12, no. 12 (December 2012): 53-74.
EndNote
Park MH, Tartarone F (December 1, 2012) DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. International Electronic Journal of Algebra 12 12 53–74.
IEEE
M. H. Park and F. Tartarone, “DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS”, IEJA, vol. 12, no. 12, pp. 53–74, 2012.
ISNAD
Park, Mi Hee - Tartarone, Francesca. “DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS”. International Electronic Journal of Algebra 12/12 (December 2012), 53-74.
JAMA
Park MH, Tartarone F. DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. IEJA. 2012;12:53–74.
MLA
Park, Mi Hee and Francesca Tartarone. “DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS”. International Electronic Journal of Algebra, vol. 12, no. 12, 2012, pp. 53-74.
Vancouver
Park MH, Tartarone F. DIVISIBILITY PROPERTIES RELATED TO STAR-OPERATIONS ON INTEGRAL DOMAINS. IEJA. 2012;12(12):53-74.