BibTex RIS Cite

A NOTE ON THE p-NILPOTENCY OF A FINITE GROUP

Year 2012, Volume: 11 Issue: 11, 12 - 19, 01.06.2012

Abstract

Suppose that G is a finite group and H is a subgroup of G. H
is said to be s-quasinormally embedded in G if for each prime p dividing |H|,
a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal
subgroup of G; H is called weakly s-supplemented in G if there is a subgroup
T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H
generated by all those subgroups of H which are s-quasinormal in G. We investigate
the influence of s-quasinormally embedded and weakly s-supplemented
subgroups on the p-nilpotency of a finite group.

References

  • M. Asaad and A. A. Heliel, On s-quasinormally embedded subgroups of Şnite groups, J. Pure Appl. Algebra, 165 (2001), 129-135.
  • A. Ballester-Bolinches and M. C. Pedraza-Aguilera, Sufficient conditions for supersolvability of Şnite groups, J. Pure Appl. Algebra, 127 (1998), 113–118.
  • K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin- New York, 1992.
  • F. Gross, Conjugacy of odd order Hall subgroups, Bull. London Math. Soc., 19 (1987), 311–319.
  • Y. Huang and Y. Li, On weakly s-supplemented subgroups of Şnite groups, Southeast Asian Bull. Math., 33 (2009), 443–450.
  • O. H. Kegel, Sylow Gruppen und subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205–221.
  • C. Li, On s-quasinormally embedded and weakly s-supplemented subgroups of Şnite groups, Arab. J. Sci. Eng., 36 (2011), 451–459.
  • Y. Li and B. Li, On minimal weakly s-supplemented subgroups of Şnite groups, J. Algebra Appl., 10 (2011), 811-820.
  • Y. Li and Y. Wang, On π-quasinormally embedded subgroups of Şnite group, J. Algebra, 281 (2004), 109–123.
  • Y. Li, Y. Wang and H. Wei, On p-nilpotency of Şnite groups with some sub- groups π-quasinormally embedded, Acta Math. Hungar., 108 (2005), 283–298.
  • L. Miao, W. Guo and K. P. Shum, New criteria for p-nilpoency of Şnite groups, Comm. Algebra, 35 (2007), 965–974.
  • M. E. Mohamed, On weakly s-supplemented subgroups of Şnite groups, Arab. J. Sci. Eng., 35 (2010), 235–240.
  • P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285–293.
  • A. N. Skiba, On weakly s-permutable subgroups of Şnite groups, J. Algebra, (2007), 192–209.
  • Y. Wang, H. Wei and Y. Li, A generalization of Kramer’s theorem and its application, Bull. Austral. Math. Soc., 65 (2002), 467–475.
  • H. Wei, R. Lu and X. Liu, On π-quasinormally embedded subgroups and the p-nilpotency of Şnite groups, J. Zhongshan Univ., 44(4) (2005), 1-3. Changwen Li
  • School of Mathematical Science Xuzhou Normal University Xuzhou, 221116
  • People’s Republic of China e-mail: lcwxz@xznu.edu.cn
Year 2012, Volume: 11 Issue: 11, 12 - 19, 01.06.2012

Abstract

References

  • M. Asaad and A. A. Heliel, On s-quasinormally embedded subgroups of Şnite groups, J. Pure Appl. Algebra, 165 (2001), 129-135.
  • A. Ballester-Bolinches and M. C. Pedraza-Aguilera, Sufficient conditions for supersolvability of Şnite groups, J. Pure Appl. Algebra, 127 (1998), 113–118.
  • K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin- New York, 1992.
  • F. Gross, Conjugacy of odd order Hall subgroups, Bull. London Math. Soc., 19 (1987), 311–319.
  • Y. Huang and Y. Li, On weakly s-supplemented subgroups of Şnite groups, Southeast Asian Bull. Math., 33 (2009), 443–450.
  • O. H. Kegel, Sylow Gruppen und subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205–221.
  • C. Li, On s-quasinormally embedded and weakly s-supplemented subgroups of Şnite groups, Arab. J. Sci. Eng., 36 (2011), 451–459.
  • Y. Li and B. Li, On minimal weakly s-supplemented subgroups of Şnite groups, J. Algebra Appl., 10 (2011), 811-820.
  • Y. Li and Y. Wang, On π-quasinormally embedded subgroups of Şnite group, J. Algebra, 281 (2004), 109–123.
  • Y. Li, Y. Wang and H. Wei, On p-nilpotency of Şnite groups with some sub- groups π-quasinormally embedded, Acta Math. Hungar., 108 (2005), 283–298.
  • L. Miao, W. Guo and K. P. Shum, New criteria for p-nilpoency of Şnite groups, Comm. Algebra, 35 (2007), 965–974.
  • M. E. Mohamed, On weakly s-supplemented subgroups of Şnite groups, Arab. J. Sci. Eng., 35 (2010), 235–240.
  • P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285–293.
  • A. N. Skiba, On weakly s-permutable subgroups of Şnite groups, J. Algebra, (2007), 192–209.
  • Y. Wang, H. Wei and Y. Li, A generalization of Kramer’s theorem and its application, Bull. Austral. Math. Soc., 65 (2002), 467–475.
  • H. Wei, R. Lu and X. Liu, On π-quasinormally embedded subgroups and the p-nilpotency of Şnite groups, J. Zhongshan Univ., 44(4) (2005), 1-3. Changwen Li
  • School of Mathematical Science Xuzhou Normal University Xuzhou, 221116
  • People’s Republic of China e-mail: lcwxz@xznu.edu.cn
There are 18 citations in total.

Details

Other ID JA92MJ55MB
Journal Section Articles
Authors

Changwen Li This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 11 Issue: 11

Cite

APA Li, C. (2012). A NOTE ON THE p-NILPOTENCY OF A FINITE GROUP. International Electronic Journal of Algebra, 11(11), 12-19.
AMA Li C. A NOTE ON THE p-NILPOTENCY OF A FINITE GROUP. IEJA. June 2012;11(11):12-19.
Chicago Li, Changwen. “A NOTE ON THE P-NILPOTENCY OF A FINITE GROUP”. International Electronic Journal of Algebra 11, no. 11 (June 2012): 12-19.
EndNote Li C (June 1, 2012) A NOTE ON THE p-NILPOTENCY OF A FINITE GROUP. International Electronic Journal of Algebra 11 11 12–19.
IEEE C. Li, “A NOTE ON THE p-NILPOTENCY OF A FINITE GROUP”, IEJA, vol. 11, no. 11, pp. 12–19, 2012.
ISNAD Li, Changwen. “A NOTE ON THE P-NILPOTENCY OF A FINITE GROUP”. International Electronic Journal of Algebra 11/11 (June 2012), 12-19.
JAMA Li C. A NOTE ON THE p-NILPOTENCY OF A FINITE GROUP. IEJA. 2012;11:12–19.
MLA Li, Changwen. “A NOTE ON THE P-NILPOTENCY OF A FINITE GROUP”. International Electronic Journal of Algebra, vol. 11, no. 11, 2012, pp. 12-19.
Vancouver Li C. A NOTE ON THE p-NILPOTENCY OF A FINITE GROUP. IEJA. 2012;11(11):12-9.