BibTex RIS Cite

GENERALIZATIONS OF INJECTIVE MODULES

Year 2012, Volume: 11 Issue: 11, 96 - 110, 01.06.2012

Abstract

Let R be a ring with identity. Given a positive integer n, a unitary
right R-module X is called n–injective provided, for every n-generated right
ideal A of R, every R-homomorphism φ : A → X can be lifted to R. In
this note we investigate this and related injectivity conditions and show that
there are many rings R which have an n–injective module which is not (n+1)–
injective.

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlag, New York, 1974.
  • J.-E. Bj¨ork, Rings satisfying certain chain conditions, J. Reine Angew. Math., (1970), 63-73.
  • V. P. Camillo, A note on semi-hereditary rings, Arch. Math. (Basel), 24 (1973), 143.
  • K. L. Fields, On the global dimension of residue rings, PaciŞc J. Math., 32 (1970), 345-349.
  • S. Jİndrup, P.P. rings and finitely generated flat ideals, Proc. Amer. Math. Soc., 28(2) (1971), 431-435.
  • L. S. Levy, Torsion-free and divisible modules over non-integral domains, Canad. J. Math., 15 (1963), 132-151.
  • W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics 158, Cambridge Univ. Press, Cambridge, 2003.
  • V. A. Puninskaya, On injectivity properties for modules over domains, in Fong Yuen, A. A. Mikhalev and E. Zelmanov, Eds., Lie Algebras, Rings and Related Topics, Springer (2000), pp. 164-170.
  • A. Shamsuddin, n-injective and n-flat-modules, Comm. Algebra, 29(5) (2001), 2050.
  • P. F. Smith, On injective and divisible modules, Arab. J. Sci. Eng., to appear. A. A. Tuganbaev, Semihereditary rings and FP-injective modules, J. Math. Sci. (New York), 112(6) (2002), 4736-4742.
  • Xiaoxiang Zhang and Jianlong Chen, On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra, 1 (2007), 1-10.
  • Esperanza S´anchez Campos Departamento de ´Algebra Geometr´ıa y Topolog´ıa Universidad de M´alaga M´alaga, Spain e-mail: esperanz@agt.cie.uma.es Patrick F. Smith Department of Mathematics University of Glasgow Glasgow G12 8QW, Scotland UK e-mail: Patrick.Smith@glasgow.ac.uk
Year 2012, Volume: 11 Issue: 11, 96 - 110, 01.06.2012

Abstract

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlag, New York, 1974.
  • J.-E. Bj¨ork, Rings satisfying certain chain conditions, J. Reine Angew. Math., (1970), 63-73.
  • V. P. Camillo, A note on semi-hereditary rings, Arch. Math. (Basel), 24 (1973), 143.
  • K. L. Fields, On the global dimension of residue rings, PaciŞc J. Math., 32 (1970), 345-349.
  • S. Jİndrup, P.P. rings and finitely generated flat ideals, Proc. Amer. Math. Soc., 28(2) (1971), 431-435.
  • L. S. Levy, Torsion-free and divisible modules over non-integral domains, Canad. J. Math., 15 (1963), 132-151.
  • W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics 158, Cambridge Univ. Press, Cambridge, 2003.
  • V. A. Puninskaya, On injectivity properties for modules over domains, in Fong Yuen, A. A. Mikhalev and E. Zelmanov, Eds., Lie Algebras, Rings and Related Topics, Springer (2000), pp. 164-170.
  • A. Shamsuddin, n-injective and n-flat-modules, Comm. Algebra, 29(5) (2001), 2050.
  • P. F. Smith, On injective and divisible modules, Arab. J. Sci. Eng., to appear. A. A. Tuganbaev, Semihereditary rings and FP-injective modules, J. Math. Sci. (New York), 112(6) (2002), 4736-4742.
  • Xiaoxiang Zhang and Jianlong Chen, On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra, 1 (2007), 1-10.
  • Esperanza S´anchez Campos Departamento de ´Algebra Geometr´ıa y Topolog´ıa Universidad de M´alaga M´alaga, Spain e-mail: esperanz@agt.cie.uma.es Patrick F. Smith Department of Mathematics University of Glasgow Glasgow G12 8QW, Scotland UK e-mail: Patrick.Smith@glasgow.ac.uk
There are 12 citations in total.

Details

Other ID JA96JV73VS
Journal Section Articles
Authors

Esperanza Sánchez Campos This is me

Patrick F. Smith This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 11 Issue: 11

Cite

APA Campos, E. S., & Smith, P. F. (2012). GENERALIZATIONS OF INJECTIVE MODULES. International Electronic Journal of Algebra, 11(11), 96-110.
AMA Campos ES, Smith PF. GENERALIZATIONS OF INJECTIVE MODULES. IEJA. June 2012;11(11):96-110.
Chicago Campos, Esperanza Sánchez, and Patrick F. Smith. “GENERALIZATIONS OF INJECTIVE MODULES”. International Electronic Journal of Algebra 11, no. 11 (June 2012): 96-110.
EndNote Campos ES, Smith PF (June 1, 2012) GENERALIZATIONS OF INJECTIVE MODULES. International Electronic Journal of Algebra 11 11 96–110.
IEEE E. S. Campos and P. F. Smith, “GENERALIZATIONS OF INJECTIVE MODULES”, IEJA, vol. 11, no. 11, pp. 96–110, 2012.
ISNAD Campos, Esperanza Sánchez - Smith, Patrick F. “GENERALIZATIONS OF INJECTIVE MODULES”. International Electronic Journal of Algebra 11/11 (June 2012), 96-110.
JAMA Campos ES, Smith PF. GENERALIZATIONS OF INJECTIVE MODULES. IEJA. 2012;11:96–110.
MLA Campos, Esperanza Sánchez and Patrick F. Smith. “GENERALIZATIONS OF INJECTIVE MODULES”. International Electronic Journal of Algebra, vol. 11, no. 11, 2012, pp. 96-110.
Vancouver Campos ES, Smith PF. GENERALIZATIONS OF INJECTIVE MODULES. IEJA. 2012;11(11):96-110.