BibTex RIS Cite

FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS

Year 2012, Volume: 11 Issue: 11, 111 - 124, 01.06.2012

Abstract

A subgroup H of G is said to be S-quasinormal in G if H permutes
with every Sylow subgroup of G. This concept was introduced by Kegel in
1962 and has been investigated by many authors. A subgroup H is called
S-semipermutable in G if H permutes with every Sylow p-subgroup of G for
which (p, |H|) = 1. A subgroup H of the group G is said to be c-normal in G
if there is a normal subgroup B of G such that HB = G and H ∩ B is normal
in G. Next, we unify and generalize the above concepts and give the following
concept: A subgroup H of the group G is said to be weakly S-semipermutably
embedded in G if there is a subnormal subgroup B of G such that HB = G
and H ∩ B is S-semipermutable or S-quasinormally embedded in G. Groups
with certain weakly S-semipermutably embedded subgroups of prime power
order are studied.

References

  • A. Ballester-Bolinches and M. C. Pedraza-Aguilera, Sufficient conditions for supersolubility of Şnite groups, J. Pure Appl. Algebra, 127 (1998), 113-118.
  • B. Brewster, A. Mart´inez-Pastor and M. D. P´erez-Ramos, Normally embedded subgroups in direct products, J. Group Theory, 9 (2006), 323-339.
  • K. Doerk and T. O. Hawkes, Finite Soluble Groups, de Gruyter, Berlin, 1992.
  • T. Foguel, Conjugate permutable subgroups, J. Algebra, 191 (1997), 235-239.
  • T. Foguel, Groups with all cyclic subgroups conjugate-permutable groups, J. Group Theory, 2 (1999), 47-51.
  • D. Gorenstein, Finite Groups, New York, 1968.
  • Z. Han, On s-semipermutable subgroups of Şnite groups and p-nilpotency, Proc. Indian Acad. Sci. Math. Sci., 120 (2010), 141-148.
  • B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
  • O. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., (1962), 205-221.
  • S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of Şnite groups, J. Algebra, 319 (2008), 4275-4287.
  • S. Li, Z. Shen and X. Kong, On SS-quasinormal subgroups of Şnite groups, Comm. Algebra, 36 (2008), 4436-4447.
  • Y. Li, Y. Wang and H. Wei, On p-nilpotency of Şnite groups with some sub- groups π-quasinormally embedded, Acta Math. Hungarica, 108 (2005), 283-298.
  • M. Ramadan, The influence of S-quasinormality of some subgroups of prime power order on the structure of Şnite groups, Arch. Math.(Basel), 77 (2001), 148.
  • Z. Shen, S. Li and W. Shi, Finite groups with normally embedded subgroups, J. Group Theory, 13 (2010), 257C265.
  • Z. Shen, W. Shi and Q. Zhang, S-quasinormality of Şnite groups, Front. Math. China, (5) 2010, 329-339.
  • A. N. Skiba, On weakly S-permutable subgroups of Şnite groups, J. Algebra, (2007), 192-209.
  • S. Srinivasan, Two sufficient conditions for the supersolvability of Şnite groups, Israel J. Math., 35 (1980), 210-214.
  • Y. Wang, c-normality of groups and its properties, J. Algebra, 180 (1996), 965.
  • H. Wei and Y. Wang, c-normality of groups and its properties, J. Group Theory, 2 (2007), 211-223.
  • Q. Zhang and L. Wang, The influence of S-semipermutable subgroups on the structure of a Şnite group, Acta Math. Sinica, 48 (2005), 81-88. Zhencai Shen
  • LMAM and School of Mathematical Sciences Peking University Beijing, 100871, P.R. China e-mail: zhencai688@sina.com
  • Jinshan Zhang and Shulin Wu School of Science Sichuan University of Science and Engineering Zigong, 643000, P. R. China e-mails: zjscdut@163.com (Jinshan Zhang) weiwei@suse.edu.cn (Shulin Wu)
Year 2012, Volume: 11 Issue: 11, 111 - 124, 01.06.2012

Abstract

References

  • A. Ballester-Bolinches and M. C. Pedraza-Aguilera, Sufficient conditions for supersolubility of Şnite groups, J. Pure Appl. Algebra, 127 (1998), 113-118.
  • B. Brewster, A. Mart´inez-Pastor and M. D. P´erez-Ramos, Normally embedded subgroups in direct products, J. Group Theory, 9 (2006), 323-339.
  • K. Doerk and T. O. Hawkes, Finite Soluble Groups, de Gruyter, Berlin, 1992.
  • T. Foguel, Conjugate permutable subgroups, J. Algebra, 191 (1997), 235-239.
  • T. Foguel, Groups with all cyclic subgroups conjugate-permutable groups, J. Group Theory, 2 (1999), 47-51.
  • D. Gorenstein, Finite Groups, New York, 1968.
  • Z. Han, On s-semipermutable subgroups of Şnite groups and p-nilpotency, Proc. Indian Acad. Sci. Math. Sci., 120 (2010), 141-148.
  • B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
  • O. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., (1962), 205-221.
  • S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of Şnite groups, J. Algebra, 319 (2008), 4275-4287.
  • S. Li, Z. Shen and X. Kong, On SS-quasinormal subgroups of Şnite groups, Comm. Algebra, 36 (2008), 4436-4447.
  • Y. Li, Y. Wang and H. Wei, On p-nilpotency of Şnite groups with some sub- groups π-quasinormally embedded, Acta Math. Hungarica, 108 (2005), 283-298.
  • M. Ramadan, The influence of S-quasinormality of some subgroups of prime power order on the structure of Şnite groups, Arch. Math.(Basel), 77 (2001), 148.
  • Z. Shen, S. Li and W. Shi, Finite groups with normally embedded subgroups, J. Group Theory, 13 (2010), 257C265.
  • Z. Shen, W. Shi and Q. Zhang, S-quasinormality of Şnite groups, Front. Math. China, (5) 2010, 329-339.
  • A. N. Skiba, On weakly S-permutable subgroups of Şnite groups, J. Algebra, (2007), 192-209.
  • S. Srinivasan, Two sufficient conditions for the supersolvability of Şnite groups, Israel J. Math., 35 (1980), 210-214.
  • Y. Wang, c-normality of groups and its properties, J. Algebra, 180 (1996), 965.
  • H. Wei and Y. Wang, c-normality of groups and its properties, J. Group Theory, 2 (2007), 211-223.
  • Q. Zhang and L. Wang, The influence of S-semipermutable subgroups on the structure of a Şnite group, Acta Math. Sinica, 48 (2005), 81-88. Zhencai Shen
  • LMAM and School of Mathematical Sciences Peking University Beijing, 100871, P.R. China e-mail: zhencai688@sina.com
  • Jinshan Zhang and Shulin Wu School of Science Sichuan University of Science and Engineering Zigong, 643000, P. R. China e-mails: zjscdut@163.com (Jinshan Zhang) weiwei@suse.edu.cn (Shulin Wu)
There are 22 citations in total.

Details

Other ID JA37JZ79SM
Journal Section Articles
Authors

Zhencai Shen This is me

Jinshan Zhang This is me

Shulin Wu This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 11 Issue: 11

Cite

APA Shen, Z., Zhang, J., & Wu, S. (2012). FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS. International Electronic Journal of Algebra, 11(11), 111-124.
AMA Shen Z, Zhang J, Wu S. FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS. IEJA. June 2012;11(11):111-124.
Chicago Shen, Zhencai, Jinshan Zhang, and Shulin Wu. “FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS”. International Electronic Journal of Algebra 11, no. 11 (June 2012): 111-24.
EndNote Shen Z, Zhang J, Wu S (June 1, 2012) FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS. International Electronic Journal of Algebra 11 11 111–124.
IEEE Z. Shen, J. Zhang, and S. Wu, “FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS”, IEJA, vol. 11, no. 11, pp. 111–124, 2012.
ISNAD Shen, Zhencai et al. “FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS”. International Electronic Journal of Algebra 11/11 (June 2012), 111-124.
JAMA Shen Z, Zhang J, Wu S. FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS. IEJA. 2012;11:111–124.
MLA Shen, Zhencai et al. “FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS”. International Electronic Journal of Algebra, vol. 11, no. 11, 2012, pp. 111-24.
Vancouver Shen Z, Zhang J, Wu S. FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS. IEJA. 2012;11(11):111-24.