Research Article
BibTex RIS Cite

HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS

Year 2012, Volume: 11 Issue: 11, 177 - 217, 01.06.2012

Abstract

Hom-Maltsev(-admissible) algebras are defined, and it is shown
that Hom-alternative algebras are Hom-Maltsev admissible. With a new defi-
nition of a Hom-Jordan algebra, it is shown that Hom-alternative algebras are
Hom-Jordan-admissible. Hom-type generalizations of some well-known identities
in alternative algebras, including the Moufang identities, are obtained.

References

  • A.A. Albert, A structure theory for Jordan algebras, Ann. Math., 48 (1947), –567.
  • A.A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), –593.
  • F. Ammar and A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 324 (2010), 1513–1528.
  • H. Ataguema, A. Makhlouf, and S. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys., 50(8) (2009), 083501.
  • J.C. Baez, The octonions, Bull. Amer. Math. Soc., 39 (2002), 145–205.
  • R.H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc., 2 (1951), 878–890.
  • ´E. Cartan, Les groupes r´eels simples Şnis et continus, Ann. ´Ecole Norm., 31 (1914), 263–355.
  • Y. Fr´egier, A. Gohr, and S. Silvestrov, Unital algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theory Appl., 3 (2009), –295.
  • A. Gohr, On hom-algebras with surjective twisting, J. Algebra, 324 (2010), –1491.
  • F. G¨ursey and C.-H. Tze, On The Role of Division, Jordan and Related Algebras in Particle Physics, World ScientiŞc, Singapore, 1996.
  • J.T. Hartwig, D. Larsson, and S.D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 295 (2006), 314–361.
  • N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc., Providence, RI, 1968.
  • P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math., 35 (1934), 29–64.
  • F.S. Kerdman, Analytic Moufang loops in the large, Alg. Logic, 18 (1980), –347.
  • E.N. Kuz’min, The connection between Mal’cev algebras and analytic Moufang loops, Alg. Logic, 10 (1971), 1–14.
  • A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Elec- tron. J. Algebra, 8 (2010), 177–190. A. Makhlouf, Paradigm of nonassociative Hom-algebras and Hom- superalgebras, Proceedings of Jordan Structures in Algebra and Analysis
  • Meeting, 143-177, Editorial C´ırculo Rojo, Almer´ıa, 2010.
  • A. Makhlouf and S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64.
  • A. Makhlouf and S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9 (2010), 1–37.
  • A.I. Mal’tsev, Analytic loops, Mat. Sb., 36 (1955), 569–576.
  • R. Moufang, Zur struktur von alternativk¨orpern, Math. Ann., 110 (1935), –430.
  • H.C. Myung, Malcev-admissible Algebras, Progress in Math. 64, Birkh¨auser, Boston, MA, 1986.
  • P.T. Nagy, Moufang loops and Malcev algebras, Sem. Sophus Lie, 3 (1993), –68.
  • S. Okubo, Introduction to Octonion and Other Non-associative Algebras in Physics, Cambridge Univ. Press, Cambridge, UK, 1995.
  • J.M. P´erez-Izquierdo and I.P. Shestakov, An envelope for Malcev algebras, J. Algebra, 272 (2004), 379–393.
  • L.V. Sabinin, Smooth Quasigroups and Loops, Kluwer Academic, The Netherlands, 1999.
  • A.A. Sagle, Malcev algebras, Trans. Amer. Math. Soc., 101 (1961), 426–458.
  • R.D. Schafer, An Introduction to Nonassociative Algebras, Dover, New York, T.A. Springer and F.D. Veldkamp, Octonions, Jordan Algebras, and Excep- tional Groups, Springer, Berlin, 2000.
  • J. Tits and R.M. Weiss, Moufang Polygons, Springer-Verlag, Berlin, 2002.
  • D. Yau, Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl., (2008), 95–108.
  • D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2009), 409-421.
  • D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Alge- bra, 8 (2010), 45–64.
  • D. Yau, Hom-Novikov algebras, J. Phys. A, 44 (2011) 085202.
  • D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi- triangular bialgebras, J. Phys. A, 42 (2009), 165202 (12pp).
  • D. Yau, The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys., 52 (2011), 053502.
  • D. Yau, The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, arXiv:0905.1890. Yau, arXiv:1001.5000. Hom-bialgebras and Hom-Lie bialgebras,
  • D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geometry Phys., accepted, arXiv:1004.2080.
  • D. Yau, Hom-quantum groups I: quasi-triangular Hom-bialgebras, J. Phys. A, accepted, arXiv:0906.4128.
  • D. Yau, Hom-quantum groups II: cobraided Hom-bialgebras and Hom- quantum geometry, arXiv:0907.1880.
  • D. Yau, Hom-quantum groups III: representations and module Hom-algebras, arXiv:0911.5402. Donald Yau
  • Department of Mathematics The Ohio State University at Newark University Drive Newark, OH 43055, USA e-mail: dyau@math.ohio-state.edu
Year 2012, Volume: 11 Issue: 11, 177 - 217, 01.06.2012

Abstract

References

  • A.A. Albert, A structure theory for Jordan algebras, Ann. Math., 48 (1947), –567.
  • A.A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), –593.
  • F. Ammar and A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 324 (2010), 1513–1528.
  • H. Ataguema, A. Makhlouf, and S. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys., 50(8) (2009), 083501.
  • J.C. Baez, The octonions, Bull. Amer. Math. Soc., 39 (2002), 145–205.
  • R.H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc., 2 (1951), 878–890.
  • ´E. Cartan, Les groupes r´eels simples Şnis et continus, Ann. ´Ecole Norm., 31 (1914), 263–355.
  • Y. Fr´egier, A. Gohr, and S. Silvestrov, Unital algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theory Appl., 3 (2009), –295.
  • A. Gohr, On hom-algebras with surjective twisting, J. Algebra, 324 (2010), –1491.
  • F. G¨ursey and C.-H. Tze, On The Role of Division, Jordan and Related Algebras in Particle Physics, World ScientiŞc, Singapore, 1996.
  • J.T. Hartwig, D. Larsson, and S.D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 295 (2006), 314–361.
  • N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc., Providence, RI, 1968.
  • P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math., 35 (1934), 29–64.
  • F.S. Kerdman, Analytic Moufang loops in the large, Alg. Logic, 18 (1980), –347.
  • E.N. Kuz’min, The connection between Mal’cev algebras and analytic Moufang loops, Alg. Logic, 10 (1971), 1–14.
  • A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Elec- tron. J. Algebra, 8 (2010), 177–190. A. Makhlouf, Paradigm of nonassociative Hom-algebras and Hom- superalgebras, Proceedings of Jordan Structures in Algebra and Analysis
  • Meeting, 143-177, Editorial C´ırculo Rojo, Almer´ıa, 2010.
  • A. Makhlouf and S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64.
  • A. Makhlouf and S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9 (2010), 1–37.
  • A.I. Mal’tsev, Analytic loops, Mat. Sb., 36 (1955), 569–576.
  • R. Moufang, Zur struktur von alternativk¨orpern, Math. Ann., 110 (1935), –430.
  • H.C. Myung, Malcev-admissible Algebras, Progress in Math. 64, Birkh¨auser, Boston, MA, 1986.
  • P.T. Nagy, Moufang loops and Malcev algebras, Sem. Sophus Lie, 3 (1993), –68.
  • S. Okubo, Introduction to Octonion and Other Non-associative Algebras in Physics, Cambridge Univ. Press, Cambridge, UK, 1995.
  • J.M. P´erez-Izquierdo and I.P. Shestakov, An envelope for Malcev algebras, J. Algebra, 272 (2004), 379–393.
  • L.V. Sabinin, Smooth Quasigroups and Loops, Kluwer Academic, The Netherlands, 1999.
  • A.A. Sagle, Malcev algebras, Trans. Amer. Math. Soc., 101 (1961), 426–458.
  • R.D. Schafer, An Introduction to Nonassociative Algebras, Dover, New York, T.A. Springer and F.D. Veldkamp, Octonions, Jordan Algebras, and Excep- tional Groups, Springer, Berlin, 2000.
  • J. Tits and R.M. Weiss, Moufang Polygons, Springer-Verlag, Berlin, 2002.
  • D. Yau, Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl., (2008), 95–108.
  • D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2009), 409-421.
  • D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Alge- bra, 8 (2010), 45–64.
  • D. Yau, Hom-Novikov algebras, J. Phys. A, 44 (2011) 085202.
  • D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi- triangular bialgebras, J. Phys. A, 42 (2009), 165202 (12pp).
  • D. Yau, The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys., 52 (2011), 053502.
  • D. Yau, The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, arXiv:0905.1890. Yau, arXiv:1001.5000. Hom-bialgebras and Hom-Lie bialgebras,
  • D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geometry Phys., accepted, arXiv:1004.2080.
  • D. Yau, Hom-quantum groups I: quasi-triangular Hom-bialgebras, J. Phys. A, accepted, arXiv:0906.4128.
  • D. Yau, Hom-quantum groups II: cobraided Hom-bialgebras and Hom- quantum geometry, arXiv:0907.1880.
  • D. Yau, Hom-quantum groups III: representations and module Hom-algebras, arXiv:0911.5402. Donald Yau
  • Department of Mathematics The Ohio State University at Newark University Drive Newark, OH 43055, USA e-mail: dyau@math.ohio-state.edu
There are 41 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Other ID JA56TC55PF
Journal Section Articles
Authors

Donald Yau This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 11 Issue: 11

Cite

APA Yau, D. (2012). HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS. International Electronic Journal of Algebra, 11(11), 177-217.
AMA Yau D. HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS. IEJA. June 2012;11(11):177-217.
Chicago Yau, Donald. “HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS”. International Electronic Journal of Algebra 11, no. 11 (June 2012): 177-217.
EndNote Yau D (June 1, 2012) HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS. International Electronic Journal of Algebra 11 11 177–217.
IEEE D. Yau, “HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS”, IEJA, vol. 11, no. 11, pp. 177–217, 2012.
ISNAD Yau, Donald. “HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS”. International Electronic Journal of Algebra 11/11 (June 2012), 177-217.
JAMA Yau D. HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS. IEJA. 2012;11:177–217.
MLA Yau, Donald. “HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS”. International Electronic Journal of Algebra, vol. 11, no. 11, 2012, pp. 177-1.
Vancouver Yau D. HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS. IEJA. 2012;11(11):177-21.