Research Article
BibTex RIS Cite

HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞)

Year 2011, Volume: 10 Issue: 10, 76 - 84, 01.12.2011

Abstract

The aim of this paper is to introduce the category of Hoch-algebras
whose objects are associative algebras equipped with an extra magmatic operation
≻ verifying the following relation motivated by the Hochschild two-cocycle
identity:
R2 : (x ≻ y) ∗ z + (x ∗ y) ≻ z = x ≻ (y ∗ z) + x ∗ (y ≻ z).
Such algebras appear in mathematical physics with ≻ associative under the
name of compatible products. Here, we relax the associativity condition. The
free Hoch-algebra over a K-vector space is then given in terms of planar rooted
trees and the triple of operads (As, Hoch, Mag∞) endowed with the infinitesimal
relations is shown to be good. Hence, according to Loday’s theory, we
then obtain an equivalence of categories between connected infinitesimal Hochbialgebras
and Mag∞-algebras.

References

  • V.Dotsenko, Compatible associative products and trees, Algebra and Number Theory, 3(5) (2009), 567–586.
  • A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommu- tative geometry, Duke Math. J., 128(2) (2005), 209–284.
  • Ph. Leroux, Infinitesimal or cocommutative dipterous bialgebras and good triples of operads, arXiv:0803.1421.
  • Ph. Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs, arXiv:0709.3453, to appear in Comm. Algebra.
  • Ph. Leroux, Tiling the (n2, 1)-De-Bruijn graph with n coassociative coalgebras, Comm. Algebra, 32(8) (2004), 2949–2967.
  • J.-L. Loday, Generalized bialgebras and triples of operads, Ast´erisque, 320 (2008), 1–116.
  • J.-L. Loday and M. Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592 (2006), 123–155.
  • A. Odesskii and V. Sokolov, Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, arXiv:math/0611200.
  • A. Odesskii and V. Sokolov, Integrable matrix equations related to pairs of compatible associative algebras, J.Phys. A, 39 (2006), 12447–12456. Philippe Leroux 27 Rue Roux Soignat 69003 Lyon, France
  • e-mail: ph ler math@yahoo.com
Year 2011, Volume: 10 Issue: 10, 76 - 84, 01.12.2011

Abstract

References

  • V.Dotsenko, Compatible associative products and trees, Algebra and Number Theory, 3(5) (2009), 567–586.
  • A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommu- tative geometry, Duke Math. J., 128(2) (2005), 209–284.
  • Ph. Leroux, Infinitesimal or cocommutative dipterous bialgebras and good triples of operads, arXiv:0803.1421.
  • Ph. Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs, arXiv:0709.3453, to appear in Comm. Algebra.
  • Ph. Leroux, Tiling the (n2, 1)-De-Bruijn graph with n coassociative coalgebras, Comm. Algebra, 32(8) (2004), 2949–2967.
  • J.-L. Loday, Generalized bialgebras and triples of operads, Ast´erisque, 320 (2008), 1–116.
  • J.-L. Loday and M. Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592 (2006), 123–155.
  • A. Odesskii and V. Sokolov, Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, arXiv:math/0611200.
  • A. Odesskii and V. Sokolov, Integrable matrix equations related to pairs of compatible associative algebras, J.Phys. A, 39 (2006), 12447–12456. Philippe Leroux 27 Rue Roux Soignat 69003 Lyon, France
  • e-mail: ph ler math@yahoo.com
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Other ID JA88VS48HF
Journal Section Articles
Authors

Philippe Leroux This is me

Publication Date December 1, 2011
Published in Issue Year 2011 Volume: 10 Issue: 10

Cite

APA Leroux, P. (2011). HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞). International Electronic Journal of Algebra, 10(10), 76-84.
AMA Leroux P. HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞). IEJA. December 2011;10(10):76-84.
Chicago Leroux, Philippe. “HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞)”. International Electronic Journal of Algebra 10, no. 10 (December 2011): 76-84.
EndNote Leroux P (December 1, 2011) HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞). International Electronic Journal of Algebra 10 10 76–84.
IEEE P. Leroux, “HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞)”, IEJA, vol. 10, no. 10, pp. 76–84, 2011.
ISNAD Leroux, Philippe. “HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞)”. International Electronic Journal of Algebra 10/10 (December 2011), 76-84.
JAMA Leroux P. HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞). IEJA. 2011;10:76–84.
MLA Leroux, Philippe. “HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞)”. International Electronic Journal of Algebra, vol. 10, no. 10, 2011, pp. 76-84.
Vancouver Leroux P. HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag∞). IEJA. 2011;10(10):76-84.