BibTex RIS Cite

ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES

Year 2011, Volume: 10 Issue: 10, 113 - 122, 01.12.2011

Abstract

In this paper we study certain properties of generalized local cohomology
modules with respect to a Serre class. We have proved that the
membership of the generalized local cohomology of finite modules M and N in
a Serre subcategory in the upper range (lower rang) depends on the support
of module M (N).

References

  • M. Asgharzadeh and M. Tousi, A unified approach to local cohomology modules using Serre classes, Canad. Math. Bull., 53 (2010), 577-586.
  • M. Asgharzadeh, K. Divaani-Azar and M. Tousi, The finiteness dimension of local cohomology modules and its dual notion, J. Pure Appl. Algebra., 213(3) (2009), 321-328.
  • J. Azami, R. Naghipour and B. Vakili, Finiteness properties of local cohomology modules for α-minimax modules, Proc. Amer. Math. Soc,. 137 (2009), 439-448.
  • K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc., 136 (2008), 2359-2363.
  • M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J., 21(2) (1980), 173-181.
  • M. P. Brodmann and F. A. Lashgari, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc,. 128 (10) (2000), 2851
  • M. P. Brodmann and R. Y. Sharp, Local Cohomology; An Algebraic Introduc- tion with Geometric Applications, Cambridge Univ. Press, Cambridge, 1998.
  • W. Bruns and J. Herzog, Cohen-Macaulay Ring, Cambridge Univ. Press, 39, Cambridge, 1998.
  • J. Herzog, Komplex Aufl¨osungen and Dualit¨at in der localen algebra, Preprint, Universit¨ut Regensburg, 1974.
  • K. Lorestani, P. Sahandi and S. Yassemi, Artinian Local cohomology modules, Canad. Math. Bull., 50(4) (2007), 598-602.
  • R. L¨u and Z. Tang, The f-depth of an ideal on a module, Proc. Amer. Math. Soc., 130 (7) (2001), 1905-1912.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14, Elsevier, 1974.
  • Fatemeh Dehghani-Zadeh Department of Mathematics Islamic Azad University Yazd Branch, Yazd, Iran e-mails: f.dehghanizadeh@yahoo.com fdzadeh@gmail.com
Year 2011, Volume: 10 Issue: 10, 113 - 122, 01.12.2011

Abstract

References

  • M. Asgharzadeh and M. Tousi, A unified approach to local cohomology modules using Serre classes, Canad. Math. Bull., 53 (2010), 577-586.
  • M. Asgharzadeh, K. Divaani-Azar and M. Tousi, The finiteness dimension of local cohomology modules and its dual notion, J. Pure Appl. Algebra., 213(3) (2009), 321-328.
  • J. Azami, R. Naghipour and B. Vakili, Finiteness properties of local cohomology modules for α-minimax modules, Proc. Amer. Math. Soc,. 137 (2009), 439-448.
  • K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc., 136 (2008), 2359-2363.
  • M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J., 21(2) (1980), 173-181.
  • M. P. Brodmann and F. A. Lashgari, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc,. 128 (10) (2000), 2851
  • M. P. Brodmann and R. Y. Sharp, Local Cohomology; An Algebraic Introduc- tion with Geometric Applications, Cambridge Univ. Press, Cambridge, 1998.
  • W. Bruns and J. Herzog, Cohen-Macaulay Ring, Cambridge Univ. Press, 39, Cambridge, 1998.
  • J. Herzog, Komplex Aufl¨osungen and Dualit¨at in der localen algebra, Preprint, Universit¨ut Regensburg, 1974.
  • K. Lorestani, P. Sahandi and S. Yassemi, Artinian Local cohomology modules, Canad. Math. Bull., 50(4) (2007), 598-602.
  • R. L¨u and Z. Tang, The f-depth of an ideal on a module, Proc. Amer. Math. Soc., 130 (7) (2001), 1905-1912.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14, Elsevier, 1974.
  • Fatemeh Dehghani-Zadeh Department of Mathematics Islamic Azad University Yazd Branch, Yazd, Iran e-mails: f.dehghanizadeh@yahoo.com fdzadeh@gmail.com
There are 13 citations in total.

Details

Other ID JA53HB98BE
Journal Section Articles
Authors

Fatemeh Dehghani-zadeh This is me

Publication Date December 1, 2011
Published in Issue Year 2011 Volume: 10 Issue: 10

Cite

APA Dehghani-zadeh, F. (2011). ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES. International Electronic Journal of Algebra, 10(10), 113-122.
AMA Dehghani-zadeh F. ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES. IEJA. December 2011;10(10):113-122.
Chicago Dehghani-zadeh, Fatemeh. “ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES”. International Electronic Journal of Algebra 10, no. 10 (December 2011): 113-22.
EndNote Dehghani-zadeh F (December 1, 2011) ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES. International Electronic Journal of Algebra 10 10 113–122.
IEEE F. Dehghani-zadeh, “ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES”, IEJA, vol. 10, no. 10, pp. 113–122, 2011.
ISNAD Dehghani-zadeh, Fatemeh. “ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES”. International Electronic Journal of Algebra 10/10 (December 2011), 113-122.
JAMA Dehghani-zadeh F. ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES. IEJA. 2011;10:113–122.
MLA Dehghani-zadeh, Fatemeh. “ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES”. International Electronic Journal of Algebra, vol. 10, no. 10, 2011, pp. 113-22.
Vancouver Dehghani-zadeh F. ON THE FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES. IEJA. 2011;10(10):113-22.