BibTex RIS Cite

ANALOGUES OF THE FRATTINI SUBALGEBRA

Year 2011, Volume: 9 Issue: 9, 124 - 132, 01.06.2011

Abstract

For a Lie algebra, L, the Frattini subalgebra F(L) is the intersection
of all maximal subalgebras of L. We develop two analogues of the Frattini
subalgebra, namely nF rat(L) and R(L). Specifically, we develop properties
involving non-generators, containment relations, and nilpotency.

References

  • R. Amayo and I. Stewart, Infinite-Dimensional Lie Algebras, Noordoff Inter- national Pub., 1974.
  • D. W. Barnes, On the Cohomology of soluble Lie algebras, Math. Z., 101 (1967), 349.
  • D. W. Barnes, The Frattini argument for Lie algebras, Math. Z., 133 (1973), 283.
  • D. W. Barnes and H. M. Gastineau-Hills, On the theory of soluble Lie algebras, Math. Z., 106 (1968), 343-354.
  • J. Beidleman and T. Seo, Generalized Frattini subgroups of finite groups. Pacific J. Math., 23 (1967), 441-450.
  • A. Elduque, A Frattini theory for Malcev algebras, Algebras Groups Geom., 1 (1984), 247-266.
  • A. Elduque, On the Frattini sublagebra of a Lie admissable algebra, Alg. Gr. and Geom., 1 (1984), 267-276.
  • A. El Malek, On the Frattini subalgebra of a Malcev algebra, Arch. Math., 37 (1981), 306-315.
  • N. Jacobson, Lie Algebras, Interscience Publishers, John Wiley & Sons, New York, 1962.
  • N. Kamiya, The Frattini subalgebra of infinite-dimensional Lie algebras, Com- ment. Math. Univ. St. Paul., 24 (2) (1975/76), 113-117.
  • L. C. Kappe and J. Kirtland, Some analogues of the Frattini subgroup, Algebra Coll., 4 (1997), 419-426
  • J. Laliene, The Frattini subalgebra of a Bernstein algebra, Proc. Edin. Math. Soc., 35 (1992) 397-403.
  • E. Marshall, The Frattini subalgebra of a Lie algebra, J. Lond. Math. Soc., 42 (1967) 416-422.
  • W. R Scott, Group Theory. Prentice-Hall, New Jersey, 1964.
  • K. Stagg and E. Stitzinger, Minimal non-elementary Lie algebras, Proc. Amer. Math. Soc., to appear. I. Stewart, Lie Algebras Generated by Finite-dimensional Ideals, Research Notes in Mathematics, Pitman Publishing, San Francisco, 1975.
  • E.L. Stitzinger, A Nonimbedding theorem for associative algebras, Pacific J. Math., 30 (1969) 529-531.
  • E.L. Stitzinger, Frattini subalgebra of a class of solvable Lie algebras, Pacific J. Math., 34 (1970), 177-182.
  • E.L. Stitzinger, On the Frattini subalgebra of a Lie algebra, J. London Math. Soc., 2(2) (1970), 429-438.
  • E.L. Stitzinger, Supersolvable Malcev algebras, J. Algebra, 103 (1986) 69-79.
  • D. Towers, Elementary Lie algebras, J. London Math. Soc., 7(3) (1973), 295
  • D. Towers, A Frattini theory for algebras, J. London Math. Soc., 27(3) (1973), 462.
  • D. Towers, Two ideals of an algebra closely related to its Frattini ideal, Arch. Math., 35 (1980), 112-120.
  • D. Towers and V. Varea, Elementary Lie algebras and A-Lie algebras, J. Al- gebra, 312 (2007), 891-901.
  • M. Williams, Nilpotent n-Lie algebras, Comm. Algebra, 37 (2009), 1843-1849.
  • M. Williams, Frattini theory for n-Lie algebras, Algebra Discrete Math., 2 (2009) 108-115. Kristen Stagg
  • Department of Mathematics North Carolina State University Raleigh, NC USA e-mail: klstagg@ncsu.edu
Year 2011, Volume: 9 Issue: 9, 124 - 132, 01.06.2011

Abstract

References

  • R. Amayo and I. Stewart, Infinite-Dimensional Lie Algebras, Noordoff Inter- national Pub., 1974.
  • D. W. Barnes, On the Cohomology of soluble Lie algebras, Math. Z., 101 (1967), 349.
  • D. W. Barnes, The Frattini argument for Lie algebras, Math. Z., 133 (1973), 283.
  • D. W. Barnes and H. M. Gastineau-Hills, On the theory of soluble Lie algebras, Math. Z., 106 (1968), 343-354.
  • J. Beidleman and T. Seo, Generalized Frattini subgroups of finite groups. Pacific J. Math., 23 (1967), 441-450.
  • A. Elduque, A Frattini theory for Malcev algebras, Algebras Groups Geom., 1 (1984), 247-266.
  • A. Elduque, On the Frattini sublagebra of a Lie admissable algebra, Alg. Gr. and Geom., 1 (1984), 267-276.
  • A. El Malek, On the Frattini subalgebra of a Malcev algebra, Arch. Math., 37 (1981), 306-315.
  • N. Jacobson, Lie Algebras, Interscience Publishers, John Wiley & Sons, New York, 1962.
  • N. Kamiya, The Frattini subalgebra of infinite-dimensional Lie algebras, Com- ment. Math. Univ. St. Paul., 24 (2) (1975/76), 113-117.
  • L. C. Kappe and J. Kirtland, Some analogues of the Frattini subgroup, Algebra Coll., 4 (1997), 419-426
  • J. Laliene, The Frattini subalgebra of a Bernstein algebra, Proc. Edin. Math. Soc., 35 (1992) 397-403.
  • E. Marshall, The Frattini subalgebra of a Lie algebra, J. Lond. Math. Soc., 42 (1967) 416-422.
  • W. R Scott, Group Theory. Prentice-Hall, New Jersey, 1964.
  • K. Stagg and E. Stitzinger, Minimal non-elementary Lie algebras, Proc. Amer. Math. Soc., to appear. I. Stewart, Lie Algebras Generated by Finite-dimensional Ideals, Research Notes in Mathematics, Pitman Publishing, San Francisco, 1975.
  • E.L. Stitzinger, A Nonimbedding theorem for associative algebras, Pacific J. Math., 30 (1969) 529-531.
  • E.L. Stitzinger, Frattini subalgebra of a class of solvable Lie algebras, Pacific J. Math., 34 (1970), 177-182.
  • E.L. Stitzinger, On the Frattini subalgebra of a Lie algebra, J. London Math. Soc., 2(2) (1970), 429-438.
  • E.L. Stitzinger, Supersolvable Malcev algebras, J. Algebra, 103 (1986) 69-79.
  • D. Towers, Elementary Lie algebras, J. London Math. Soc., 7(3) (1973), 295
  • D. Towers, A Frattini theory for algebras, J. London Math. Soc., 27(3) (1973), 462.
  • D. Towers, Two ideals of an algebra closely related to its Frattini ideal, Arch. Math., 35 (1980), 112-120.
  • D. Towers and V. Varea, Elementary Lie algebras and A-Lie algebras, J. Al- gebra, 312 (2007), 891-901.
  • M. Williams, Nilpotent n-Lie algebras, Comm. Algebra, 37 (2009), 1843-1849.
  • M. Williams, Frattini theory for n-Lie algebras, Algebra Discrete Math., 2 (2009) 108-115. Kristen Stagg
  • Department of Mathematics North Carolina State University Raleigh, NC USA e-mail: klstagg@ncsu.edu
There are 26 citations in total.

Details

Other ID JA68HT86UF
Journal Section Articles
Authors

Kristen Stagg This is me

Publication Date June 1, 2011
Published in Issue Year 2011 Volume: 9 Issue: 9

Cite

APA Stagg, K. (2011). ANALOGUES OF THE FRATTINI SUBALGEBRA. International Electronic Journal of Algebra, 9(9), 124-132.
AMA Stagg K. ANALOGUES OF THE FRATTINI SUBALGEBRA. IEJA. June 2011;9(9):124-132.
Chicago Stagg, Kristen. “ANALOGUES OF THE FRATTINI SUBALGEBRA”. International Electronic Journal of Algebra 9, no. 9 (June 2011): 124-32.
EndNote Stagg K (June 1, 2011) ANALOGUES OF THE FRATTINI SUBALGEBRA. International Electronic Journal of Algebra 9 9 124–132.
IEEE K. Stagg, “ANALOGUES OF THE FRATTINI SUBALGEBRA”, IEJA, vol. 9, no. 9, pp. 124–132, 2011.
ISNAD Stagg, Kristen. “ANALOGUES OF THE FRATTINI SUBALGEBRA”. International Electronic Journal of Algebra 9/9 (June 2011), 124-132.
JAMA Stagg K. ANALOGUES OF THE FRATTINI SUBALGEBRA. IEJA. 2011;9:124–132.
MLA Stagg, Kristen. “ANALOGUES OF THE FRATTINI SUBALGEBRA”. International Electronic Journal of Algebra, vol. 9, no. 9, 2011, pp. 124-32.
Vancouver Stagg K. ANALOGUES OF THE FRATTINI SUBALGEBRA. IEJA. 2011;9(9):124-32.