All rings considered are commutative with identity. Let R be a complemented ring with integral closure R0 (in its total quotient ring K). Then R ⊆ S satisfies INC for each overring S of R (inside K) if and only if R0 is a Prüfer ring. If R0 is a Prüfer ring and T is a complemented ring that contains R as a subring such that each regular element of T is a root of a polynomial in R[X] with a regular coefficient and T is torsion-free over R, then R ⊆ T satisfies INC. As a consequence, a new generalization for rings with nontrivial zero-divisors is found of Pr¨ufer’s result on the integral closure of a Prüfer domain in a field extension of the quotient field.
D. F. Anderson and A. Badawi, Divisibility conditions in commutative rings with zerodivisors, Comm. Algebra, 30 (2002), 4031–4047.
D. E. Dobbs, On INC-extensions and polynomials with unit content, Canad. Math. Bull., 23 (1980), 37–42.
D. E. Dobbs, Pr¨ufer’s ascent result via INC, Comm. Algebra, 23 (1995), –119.
S. Endo, On semi-hereditary rings, J. Math. Soc. Japan, 13 (1961), 5413–
R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
M. Griffin, Pr¨ufer rings with zero divisors, J. Reine Angew. Math., 239/240 (1969), 55–67.
J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, I. J. Papick, Topologically defined classes of going-down domains, Trans. Amer. Math. Soc., 219 (1976), 1–37.
G. Picavet and M. Picavet-L’Hermitte, Seminormal or t-closed schemes and Rees rings, Algebr. Represent. Theory, 1 (1998), 255–309.
H. Pr¨ufer, Untersuchungen ¨uber Teilbarkeitseigenschaften in K¨orpern, J. Reine Angew. Math., 168 (1932), 1–36.
F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc.,16 (1965), –799.
H. Uda, Incomparability in ring extensions, Hiroshima Math. J., 9 (1979), –463. David E. Dobbs
Department of Mathematics University of Tennessee Knoxville, TN 37996-0612, U.S.A. e-mail: dobbs@math.utk.edu Jay Shapiro
Department of Mathematical Sciences George Mason University Fairfax, VA 22030-4444, U.S.A. e-mail: jshapiro@gmu.edu
Year 2010,
Volume: 7 Issue: 7, 102 - 109, 01.06.2010
D. F. Anderson and A. Badawi, Divisibility conditions in commutative rings with zerodivisors, Comm. Algebra, 30 (2002), 4031–4047.
D. E. Dobbs, On INC-extensions and polynomials with unit content, Canad. Math. Bull., 23 (1980), 37–42.
D. E. Dobbs, Pr¨ufer’s ascent result via INC, Comm. Algebra, 23 (1995), –119.
S. Endo, On semi-hereditary rings, J. Math. Soc. Japan, 13 (1961), 5413–
R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
M. Griffin, Pr¨ufer rings with zero divisors, J. Reine Angew. Math., 239/240 (1969), 55–67.
J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, I. J. Papick, Topologically defined classes of going-down domains, Trans. Amer. Math. Soc., 219 (1976), 1–37.
G. Picavet and M. Picavet-L’Hermitte, Seminormal or t-closed schemes and Rees rings, Algebr. Represent. Theory, 1 (1998), 255–309.
H. Pr¨ufer, Untersuchungen ¨uber Teilbarkeitseigenschaften in K¨orpern, J. Reine Angew. Math., 168 (1932), 1–36.
F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc.,16 (1965), –799.
H. Uda, Incomparability in ring extensions, Hiroshima Math. J., 9 (1979), –463. David E. Dobbs
Department of Mathematics University of Tennessee Knoxville, TN 37996-0612, U.S.A. e-mail: dobbs@math.utk.edu Jay Shapiro
Department of Mathematical Sciences George Mason University Fairfax, VA 22030-4444, U.S.A. e-mail: jshapiro@gmu.edu