BibTex RIS Cite

WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS

Year 2009, Volume: 6 Issue: 6, 74 - 94, 01.12.2009

Abstract

Let L be a weak Hopf algebra with a bijective antipode SL in the sense of [3]. In this paper we show that if H is a finite-dimensional weak Hopf algebra in the weak Yetter-Drinfeld category L LWYD in the sense of [1], then its dual H∗ is also a weak Hopf algebra in L LWYD. Also we will apply above result to the representations category Rep(L) = LM of a quasitriangular weak Hopf algebra L.

References

  • G. B¨ohm, Doi-Hopf modules over weak Hopf algebras, Comm. Algebra, 28 (2000), 4687-4698.
  • G. B¨ohm, F. Nill, K. Szlach´anyi, Weak Hopf algebras I. Integral theory and C*-structure, J. Algebra, 221 (1999), 385-438.
  • G. B¨ohm, K. Szlach´anyi, A coassociative C*-quantum group with nonintegral dimensions, Lett. in Math. Phys., 35 (1996), 437-456.
  • S. Caenepeel, E. De Groot, Modules over weak entwining structures, Contem- porary Mathematics, 267 (2000), 31-54.
  • S. Caenepeel, D.G. Wang, Y.M. Yin, Yetter-Drinfeld modules over weak bial- gebras, Ann. Univ. Ferrara Sez. VII - Sc. Mat., 51 (2005), 69-98.
  • Y. Doi, Hopf modules in Yetter-Drifeld categories, Comm. Algebra, 26(9) (1998), 3057-3070.
  • P. Etingof, D. Nikshych, Dynamical quantum groups at roots of 1, Duke Math. J., 108 (2001), 135-168.
  • L. Kadison, D. Nikshych, Frobenius extensions and weak Hopf algebras, J. Algebra, 244 (2001), 312-342.
  • D. Nikshych, A duality theorem for quantum groupoids, Contemporary Math- ematics, 267 (2000), 237-243.
  • D. Nikshych, V. Turaev, L. Vainerman, Invariants of knots and 3-manifolds from quantum groupoids, Topology and its application, 127 (2003), 91-123.
  • D. Nikshych, L. Vainerman, A characterization of depth 2 subfactors of Π1 factors, J. Funct. Anal., 171 (2000), 278-307.
  • M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
  • Bing-liang Shen and Shuan-hong Wang Department of Mathematics Southeast University Nanjing, Jiangsu 210096, P. R. of China e-mail: bingliangshen@yahoo.com.cn (B.L. Shen), shuanhwang2002@yahoo.com (S.H. Wang)
Year 2009, Volume: 6 Issue: 6, 74 - 94, 01.12.2009

Abstract

References

  • G. B¨ohm, Doi-Hopf modules over weak Hopf algebras, Comm. Algebra, 28 (2000), 4687-4698.
  • G. B¨ohm, F. Nill, K. Szlach´anyi, Weak Hopf algebras I. Integral theory and C*-structure, J. Algebra, 221 (1999), 385-438.
  • G. B¨ohm, K. Szlach´anyi, A coassociative C*-quantum group with nonintegral dimensions, Lett. in Math. Phys., 35 (1996), 437-456.
  • S. Caenepeel, E. De Groot, Modules over weak entwining structures, Contem- porary Mathematics, 267 (2000), 31-54.
  • S. Caenepeel, D.G. Wang, Y.M. Yin, Yetter-Drinfeld modules over weak bial- gebras, Ann. Univ. Ferrara Sez. VII - Sc. Mat., 51 (2005), 69-98.
  • Y. Doi, Hopf modules in Yetter-Drifeld categories, Comm. Algebra, 26(9) (1998), 3057-3070.
  • P. Etingof, D. Nikshych, Dynamical quantum groups at roots of 1, Duke Math. J., 108 (2001), 135-168.
  • L. Kadison, D. Nikshych, Frobenius extensions and weak Hopf algebras, J. Algebra, 244 (2001), 312-342.
  • D. Nikshych, A duality theorem for quantum groupoids, Contemporary Math- ematics, 267 (2000), 237-243.
  • D. Nikshych, V. Turaev, L. Vainerman, Invariants of knots and 3-manifolds from quantum groupoids, Topology and its application, 127 (2003), 91-123.
  • D. Nikshych, L. Vainerman, A characterization of depth 2 subfactors of Π1 factors, J. Funct. Anal., 171 (2000), 278-307.
  • M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
  • Bing-liang Shen and Shuan-hong Wang Department of Mathematics Southeast University Nanjing, Jiangsu 210096, P. R. of China e-mail: bingliangshen@yahoo.com.cn (B.L. Shen), shuanhwang2002@yahoo.com (S.H. Wang)
There are 13 citations in total.

Details

Other ID JA66TF47FP
Journal Section Articles
Authors

Bing-liang Shen This is me

Shuan-hong Wang This is me

Publication Date December 1, 2009
Published in Issue Year 2009 Volume: 6 Issue: 6

Cite

APA Shen, B.-l., & Wang, S.-h. (2009). WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS. International Electronic Journal of Algebra, 6(6), 74-94.
AMA Shen Bl, Wang Sh. WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS. IEJA. December 2009;6(6):74-94.
Chicago Shen, Bing-liang, and Shuan-hong Wang. “WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS”. International Electronic Journal of Algebra 6, no. 6 (December 2009): 74-94.
EndNote Shen B-l, Wang S-h (December 1, 2009) WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS. International Electronic Journal of Algebra 6 6 74–94.
IEEE B.-l. Shen and S.-h. Wang, “WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS”, IEJA, vol. 6, no. 6, pp. 74–94, 2009.
ISNAD Shen, Bing-liang - Wang, Shuan-hong. “WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS”. International Electronic Journal of Algebra 6/6 (December 2009), 74-94.
JAMA Shen B-l, Wang S-h. WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS. IEJA. 2009;6:74–94.
MLA Shen, Bing-liang and Shuan-hong Wang. “WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS”. International Electronic Journal of Algebra, vol. 6, no. 6, 2009, pp. 74-94.
Vancouver Shen B-l, Wang S-h. WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES AND APPLICATIONS. IEJA. 2009;6(6):74-9.