BibTex RIS Cite

A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE

Year 2009, Volume: 5 Issue: 5, 114 - 120, 01.06.2009

Abstract

Let (A, m) be a Noetherian local ring with infinite residue field and E be a finitely generated d dimensional Cohen-Macaulay A-module. Let b be an ideal of A such that htEb = 0 and λ(b, E) = 1. Assume that bp = 0 for all p ∈ Min(E/bE). Let r(b, E) > 0. We show that if Gb(E) is Cohen-Macaulay, then r(b, E) = a(Gb(E)) + 1.

References

  • M. Brodmann and R. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
  • C. D’Cruz, V. Kodiyalam and J. K. Verma, Bounds on the a-invariant and reduction numbers of ideals, J. Algebra, 274 (2004) 594-601.
  • S. Goto and S. Huckaba, On graded rings associated to analytic deviation one ideals, Amer. J. Math., 116 (1994) 905-919.
  • S. Gote and K. Watanabe, Graded rings I, J. Math. Soc. Japan, 30 (1978) 179-213.
  • M. Hermann, J. Ribbe and S. Zarzula, On the Gorenstein property of Rees and form rings of powers of ideals, Trans. Amer. Math. Soc., 342(2) (1994), 631-643.
  • M. Hermann, S. Ikeda and U. Orbanz, Equimultiplicity and Blowing Up, Springer-Verlag, New york, 1988.
  • L. T. Hoa, Reduction numbers and Rees algebras of powers of an ideal, Proc. Amer. Math. Soc., 119 (1993) 415-422.
  • L. T. Hoa, Reduction numbers of equimultiple ideals, J. Pure Appl. Algebra, 109 (1996) 111-126.
  • T. Marley, The reduction number of an ideal and the local cohomology of the associated graded ring, Proc. Amer. Math. Soc., 117 (1993) 335-341.
  • D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50 (1954) 145-158.
  • J. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ., 17 (1977) 19-21.
  • J. Sally, Reductions, local cohomology and Hilbert functions of local rings, Com- mutative algebra: Durham 1981, London Math. Soc. Lecture Note Ser.,vol. 72, Cambridge University Press, 1982, pp. 393-408.
  • N. V. Trung, Reduction exponents and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc., 101 (1987) 229-236.
  • N. V. Trung, Towards a theory of generalized Cohen-Macaulay modules, Nagoya Math. J., 102 (1986) 1-49. Naser Zamani Faculty of Science,
  • University of Mohaghegh Ardabili
  • P.O.Box 179, Ardabil, Iran
  • e-mail: naserzaka@yahoo.com
Year 2009, Volume: 5 Issue: 5, 114 - 120, 01.06.2009

Abstract

References

  • M. Brodmann and R. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
  • C. D’Cruz, V. Kodiyalam and J. K. Verma, Bounds on the a-invariant and reduction numbers of ideals, J. Algebra, 274 (2004) 594-601.
  • S. Goto and S. Huckaba, On graded rings associated to analytic deviation one ideals, Amer. J. Math., 116 (1994) 905-919.
  • S. Gote and K. Watanabe, Graded rings I, J. Math. Soc. Japan, 30 (1978) 179-213.
  • M. Hermann, J. Ribbe and S. Zarzula, On the Gorenstein property of Rees and form rings of powers of ideals, Trans. Amer. Math. Soc., 342(2) (1994), 631-643.
  • M. Hermann, S. Ikeda and U. Orbanz, Equimultiplicity and Blowing Up, Springer-Verlag, New york, 1988.
  • L. T. Hoa, Reduction numbers and Rees algebras of powers of an ideal, Proc. Amer. Math. Soc., 119 (1993) 415-422.
  • L. T. Hoa, Reduction numbers of equimultiple ideals, J. Pure Appl. Algebra, 109 (1996) 111-126.
  • T. Marley, The reduction number of an ideal and the local cohomology of the associated graded ring, Proc. Amer. Math. Soc., 117 (1993) 335-341.
  • D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50 (1954) 145-158.
  • J. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ., 17 (1977) 19-21.
  • J. Sally, Reductions, local cohomology and Hilbert functions of local rings, Com- mutative algebra: Durham 1981, London Math. Soc. Lecture Note Ser.,vol. 72, Cambridge University Press, 1982, pp. 393-408.
  • N. V. Trung, Reduction exponents and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc., 101 (1987) 229-236.
  • N. V. Trung, Towards a theory of generalized Cohen-Macaulay modules, Nagoya Math. J., 102 (1986) 1-49. Naser Zamani Faculty of Science,
  • University of Mohaghegh Ardabili
  • P.O.Box 179, Ardabil, Iran
  • e-mail: naserzaka@yahoo.com
There are 18 citations in total.

Details

Other ID JA76UN52DR
Journal Section Articles
Authors

Naser Zamani This is me

Publication Date June 1, 2009
Published in Issue Year 2009 Volume: 5 Issue: 5

Cite

APA Zamani, N. (2009). A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE. International Electronic Journal of Algebra, 5(5), 114-120.
AMA Zamani N. A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE. IEJA. June 2009;5(5):114-120.
Chicago Zamani, Naser. “A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE”. International Electronic Journal of Algebra 5, no. 5 (June 2009): 114-20.
EndNote Zamani N (June 1, 2009) A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE. International Electronic Journal of Algebra 5 5 114–120.
IEEE N. Zamani, “A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE”, IEJA, vol. 5, no. 5, pp. 114–120, 2009.
ISNAD Zamani, Naser. “A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE”. International Electronic Journal of Algebra 5/5 (June 2009), 114-120.
JAMA Zamani N. A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE. IEJA. 2009;5:114–120.
MLA Zamani, Naser. “A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE”. International Electronic Journal of Algebra, vol. 5, no. 5, 2009, pp. 114-20.
Vancouver Zamani N. A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE. IEJA. 2009;5(5):114-20.