BibTex RIS Cite

CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II

Year 2008, Volume: 4 Issue: 4, 131 - 148, 01.12.2008

Abstract

In this paper we continue our study of classical Zariski topology of modules, that was introduced in Part I (see [2]). For a left R-module M, the prime spectrum Spec(RM) of M is the collection of all prime submodules. First, we study some continuous mappings which are induced from some natural homomorphisms. Then we generalize the patch topology of rings to modules, and show that for every left R-module M, Spec(RM) with the patch topology is Hausdorf and it is disconnected provided |Spec(RM)| > 1. Next, by applying Hochster’s characterization of a spectral space, we show that if M is a left R-module such that M has ascending chain condition (ACC) on intersection of prime submodules, then Spec(RM) is a spectral space, i.e., Spec(RM) is homeomorphic to Spec(S) for some commutative ring S. This yields if M is a Noetherian left R-module or R is a PI-ring (or an FBN-ring) and M is an Artinian left R-module, then Spec(RM) is a spectral space. Finally, we show that for every Noetherian left R-module M, Max(M) (with the classical Zariski topology) is homeomorphic with the maximal ideal space of some commutative ring S.

References

  • M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra, 305(2006), 1128-1148.
  • M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra, 4 (2008), 104-130.
  • N. Bourbaki, Algebra Commutative, Chap, 1.2, Hermann, Paris, 1961.
  • K. R. Goodearl and R. B. Warfield, An Introduction to Non-commutative Noetherian Rings (Second Edition), London Math. Soc. Student Texts 16, Cambridge University Press, Cambridge, 2004.
  • M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 137 (1969), 43-60.
  • C. P. Lu, Prime submodule of modules, Math. Univ. Sancti. Pauli., 33 (1984), 69.
  • J. R. Mankres, Topology, A first course, Prentice-Hall, Inc. Eaglewood Cliffs, New Jersey, 1975.
  • R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
  • R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25 (1997), 79-103.
  • R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math., 23 (1993), 1041-1062.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Wily, Chichester, 1987.
  • M. Behboodi and M.R. Haddadi Department of Mathematical Science, Isfahan University of Technology, 83111 Isfahan, Iran e-mails: mbehbood@cc.iut.ac.ir (M. Behboodi) haddadi83@math.iut.ac.ir (M.R. Haddadi)
Year 2008, Volume: 4 Issue: 4, 131 - 148, 01.12.2008

Abstract

References

  • M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra, 305(2006), 1128-1148.
  • M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra, 4 (2008), 104-130.
  • N. Bourbaki, Algebra Commutative, Chap, 1.2, Hermann, Paris, 1961.
  • K. R. Goodearl and R. B. Warfield, An Introduction to Non-commutative Noetherian Rings (Second Edition), London Math. Soc. Student Texts 16, Cambridge University Press, Cambridge, 2004.
  • M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 137 (1969), 43-60.
  • C. P. Lu, Prime submodule of modules, Math. Univ. Sancti. Pauli., 33 (1984), 69.
  • J. R. Mankres, Topology, A first course, Prentice-Hall, Inc. Eaglewood Cliffs, New Jersey, 1975.
  • R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
  • R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25 (1997), 79-103.
  • R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math., 23 (1993), 1041-1062.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Wily, Chichester, 1987.
  • M. Behboodi and M.R. Haddadi Department of Mathematical Science, Isfahan University of Technology, 83111 Isfahan, Iran e-mails: mbehbood@cc.iut.ac.ir (M. Behboodi) haddadi83@math.iut.ac.ir (M.R. Haddadi)
There are 12 citations in total.

Details

Other ID JA28TU29UM
Journal Section Articles
Authors

M. Behboodi This is me

M. R. Haddadi This is me

Publication Date December 1, 2008
Published in Issue Year 2008 Volume: 4 Issue: 4

Cite

APA Behboodi, M., & Haddadi, M. R. (2008). CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II. International Electronic Journal of Algebra, 4(4), 131-148.
AMA Behboodi M, Haddadi MR. CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II. IEJA. December 2008;4(4):131-148.
Chicago Behboodi, M., and M. R. Haddadi. “CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II”. International Electronic Journal of Algebra 4, no. 4 (December 2008): 131-48.
EndNote Behboodi M, Haddadi MR (December 1, 2008) CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II. International Electronic Journal of Algebra 4 4 131–148.
IEEE M. Behboodi and M. R. Haddadi, “CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II”, IEJA, vol. 4, no. 4, pp. 131–148, 2008.
ISNAD Behboodi, M. - Haddadi, M. R. “CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II”. International Electronic Journal of Algebra 4/4 (December 2008), 131-148.
JAMA Behboodi M, Haddadi MR. CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II. IEJA. 2008;4:131–148.
MLA Behboodi, M. and M. R. Haddadi. “CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II”. International Electronic Journal of Algebra, vol. 4, no. 4, 2008, pp. 131-48.
Vancouver Behboodi M, Haddadi MR. CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II. IEJA. 2008;4(4):131-48.