BibTex RIS Cite

GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES

Year 2008, Volume: 4 Issue: 4, 159 - 176, 01.12.2008

Abstract

A challenging problem in recent years has been to find a good description of the radical of a submodule N of a (Noetherian) module M over a commutative ring, where the radical of N is the intersection of all prime submodules of M which contain N. In this paper we give a description of the radical of N in a Noetherian module M which is amenable to computation either by hand in simple cases or by using a computer algebra system in other cases, and illustrate this by examples.

References

  • R. B. Ash, A course http://www.math.uiuc.edu/ r-ash/ComAlg.html, 2003. in commutative algebra, Available at
  • D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995.
  • D. Eisenbud, C. Huneke, and W. Vasconcelos, Direct methods for primary decomposition, Invent. Math., 110 (1992), 207-235.
  • L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Primal ideals, Trans. Amer. Math. Soc., 357 (2005), 2798.
  • J. Jenkins and P. F. Smith, On the prime radical of a module over a commu- tative ring, Comm. Algebra, 20 (1992), 3593-3602.
  • Kah Hin Leung and Shing Hing Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J., 39 (1997), 285-293.
  • C.-P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61-69.
  • C.-P. Lu, M-radicals of submodules in modules II, Math. Japonica, 35 (1990), 1001.
  • A. Marcelo and C. Rodriguez, Radicals of submodules and symmetric algebra, Comm. Algebra, 28 (2000), 4611-4617.
  • R. L. McCasland, Some commutative ring results generalized to unitary mod- ules, Ph.D. thesis, University of Texas at Arlington, 1983.
  • R. L. McCasland and M. E. Moore, On radicals of submodules of finitely gen- erated modules, Canad. Math. Bull., 29 (1986), 37-39.
  • R. L. McCasland and M. E. Moore, On radicals of submodules, Comm. Algebra, (1991), 1327-1341.
  • R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
  • R. L. McCasland, J. B. A. Schmidt, P. F. Smith, and E. M. Stark, Uniform dimension and radical modules, University of Glasgow Preprint 99/19 (1999).
  • R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math., 23 (1993), 1041-1062.
  • R. L. McCasland and P. F. Smith, Uniform dimension of modules, Q. J. Math., (2004), 491-498.
  • R. L. McCasland and P. F. Smith, On isolated submodules, Comm. Algebra, (2006), 2977-2988.
  • P. F. Smith, Primary modules over commutative rings, Glasgow. Math. J., 43 (2001), 103-111.
  • Wang Fanggui and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra, 25 (1997), 1285-1306. R.L. McCasland
  • School of Informatics University of Edinburgh Edinburgh EH8 9LE, Scotland UK e-mail: rmccasla@inf.ed.ac.uk P.F. Smith Department of Mathematics University of Glasgow Glasgow G12 8QW, Scotland UK e-mail: pfs@maths.gla.ac.uk
Year 2008, Volume: 4 Issue: 4, 159 - 176, 01.12.2008

Abstract

References

  • R. B. Ash, A course http://www.math.uiuc.edu/ r-ash/ComAlg.html, 2003. in commutative algebra, Available at
  • D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995.
  • D. Eisenbud, C. Huneke, and W. Vasconcelos, Direct methods for primary decomposition, Invent. Math., 110 (1992), 207-235.
  • L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Primal ideals, Trans. Amer. Math. Soc., 357 (2005), 2798.
  • J. Jenkins and P. F. Smith, On the prime radical of a module over a commu- tative ring, Comm. Algebra, 20 (1992), 3593-3602.
  • Kah Hin Leung and Shing Hing Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J., 39 (1997), 285-293.
  • C.-P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61-69.
  • C.-P. Lu, M-radicals of submodules in modules II, Math. Japonica, 35 (1990), 1001.
  • A. Marcelo and C. Rodriguez, Radicals of submodules and symmetric algebra, Comm. Algebra, 28 (2000), 4611-4617.
  • R. L. McCasland, Some commutative ring results generalized to unitary mod- ules, Ph.D. thesis, University of Texas at Arlington, 1983.
  • R. L. McCasland and M. E. Moore, On radicals of submodules of finitely gen- erated modules, Canad. Math. Bull., 29 (1986), 37-39.
  • R. L. McCasland and M. E. Moore, On radicals of submodules, Comm. Algebra, (1991), 1327-1341.
  • R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
  • R. L. McCasland, J. B. A. Schmidt, P. F. Smith, and E. M. Stark, Uniform dimension and radical modules, University of Glasgow Preprint 99/19 (1999).
  • R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math., 23 (1993), 1041-1062.
  • R. L. McCasland and P. F. Smith, Uniform dimension of modules, Q. J. Math., (2004), 491-498.
  • R. L. McCasland and P. F. Smith, On isolated submodules, Comm. Algebra, (2006), 2977-2988.
  • P. F. Smith, Primary modules over commutative rings, Glasgow. Math. J., 43 (2001), 103-111.
  • Wang Fanggui and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra, 25 (1997), 1285-1306. R.L. McCasland
  • School of Informatics University of Edinburgh Edinburgh EH8 9LE, Scotland UK e-mail: rmccasla@inf.ed.ac.uk P.F. Smith Department of Mathematics University of Glasgow Glasgow G12 8QW, Scotland UK e-mail: pfs@maths.gla.ac.uk
There are 20 citations in total.

Details

Other ID JA57KV28RM
Journal Section Articles
Authors

R. L. Mccasland This is me

P. F. Smith This is me

Publication Date December 1, 2008
Published in Issue Year 2008 Volume: 4 Issue: 4

Cite

APA Mccasland, R. L., & Smith, P. F. (2008). GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. International Electronic Journal of Algebra, 4(4), 159-176.
AMA Mccasland RL, Smith PF. GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. IEJA. December 2008;4(4):159-176.
Chicago Mccasland, R. L., and P. F. Smith. “GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES”. International Electronic Journal of Algebra 4, no. 4 (December 2008): 159-76.
EndNote Mccasland RL, Smith PF (December 1, 2008) GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. International Electronic Journal of Algebra 4 4 159–176.
IEEE R. L. Mccasland and P. F. Smith, “GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES”, IEJA, vol. 4, no. 4, pp. 159–176, 2008.
ISNAD Mccasland, R. L. - Smith, P. F. “GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES”. International Electronic Journal of Algebra 4/4 (December 2008), 159-176.
JAMA Mccasland RL, Smith PF. GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. IEJA. 2008;4:159–176.
MLA Mccasland, R. L. and P. F. Smith. “GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES”. International Electronic Journal of Algebra, vol. 4, no. 4, 2008, pp. 159-76.
Vancouver Mccasland RL, Smith PF. GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. IEJA. 2008;4(4):159-76.