BibTex RIS Cite

ON REDUCED MODULES AND RINGS

Year 2008, Volume: 3 Issue: 3, 56 - 74, 01.06.2008

Abstract

In this paper we extend several results known for reduced rings to reduced modules. We prove that for a semiprime module or a module with zero Jacobson radical, the concepts of reduced, symmetric, ps-Armendariz and ZI modules coincide. New examples of reduced modules are furnished: flat modules over reduced rings and modules with zero Jacobson radical over left quo rings are reduced. Rings over which all modules are reduced/symmetric are characterized.

References

  • N. Agayev and A. Harmanci, On semicommutative modules and rings, Kyung- pook Math. J. 47(2007), 21-30.
  • D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26(7)(1998), 2265-2272.
  • D.D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27(6)(1999), 2847-2852.
  • G. Azumaya, M. Mbuntum and K. Varadarajan, On M-projective and M- injective modules, Pacific J. Math. 59(1975)(1), 9-16.
  • M. Baser and N. Agayev, On reduced and semicommutative modules, Turkish J. Math. 30(2006), 285-291.
  • H.H. Brungs, Three questions on duo rings, Pacific J. Math. 58(1975), 345-349.
  • A.M. Buhphang and M.B. Rege, Semi-commutative modules and Armendariz modules, Arab J. Math. Sci. 8(2002), 53-65.
  • S. Elliger, Interdirekte Summen von Moduln, J. Algebra 18(1971), 271-303.
  • K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Marcel Dekker, New York 1976.
  • Y. Hirano, Regular modules and V-modules, Hiroshima Math. J. 11(1981), 142.
  • C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30(2)(2002), 751-761.
  • N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra (2000), 477-488.
  • N.K. Kim, K.H. Lee and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34(2006), 2205-2218.
  • J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull. 14(2)(1971), 359-368.
  • T.K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, pp.365-377, Lecture Notes in Pure and Appl. Math. 236,Mar- cel Dekker, New York, 2004.
  • R. Raphael, Some remarks on regular and strongly regular rings, Canad. Math.Bull. 17(5)(1974/75), 709-712.
  • M.B. Rege, On von Neumann regular rings and SF-rings, Math. Japonica (6)(1986), 927-936.
  • M.B. Rege and S.C. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.
  • G. Renault, Anneaux reduits non commutatifs, J. Math. Pures Appl. 46(1967), 214.
  • B. Stenstr¨om, Rings of Quotients: An Introduction to the Methods of Ring Theory, Springer-Verlag, New York, 1975.
  • J. Zelmanowitz, Semiprime modules with maximum conditions, J. Algebra (3)(1973),554-574.
  • Mangesh B. Rege*and A. M. Buhphang** Department of Mathematics, North Eastern Hill University, Permanent Campus, Shillong-793022, Meghalaya, India.
  • E-mails:*mb29rege@yahoo.co.in ,**ardeline17@gmail.com
Year 2008, Volume: 3 Issue: 3, 56 - 74, 01.06.2008

Abstract

References

  • N. Agayev and A. Harmanci, On semicommutative modules and rings, Kyung- pook Math. J. 47(2007), 21-30.
  • D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26(7)(1998), 2265-2272.
  • D.D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27(6)(1999), 2847-2852.
  • G. Azumaya, M. Mbuntum and K. Varadarajan, On M-projective and M- injective modules, Pacific J. Math. 59(1975)(1), 9-16.
  • M. Baser and N. Agayev, On reduced and semicommutative modules, Turkish J. Math. 30(2006), 285-291.
  • H.H. Brungs, Three questions on duo rings, Pacific J. Math. 58(1975), 345-349.
  • A.M. Buhphang and M.B. Rege, Semi-commutative modules and Armendariz modules, Arab J. Math. Sci. 8(2002), 53-65.
  • S. Elliger, Interdirekte Summen von Moduln, J. Algebra 18(1971), 271-303.
  • K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Marcel Dekker, New York 1976.
  • Y. Hirano, Regular modules and V-modules, Hiroshima Math. J. 11(1981), 142.
  • C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30(2)(2002), 751-761.
  • N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra (2000), 477-488.
  • N.K. Kim, K.H. Lee and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34(2006), 2205-2218.
  • J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull. 14(2)(1971), 359-368.
  • T.K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, pp.365-377, Lecture Notes in Pure and Appl. Math. 236,Mar- cel Dekker, New York, 2004.
  • R. Raphael, Some remarks on regular and strongly regular rings, Canad. Math.Bull. 17(5)(1974/75), 709-712.
  • M.B. Rege, On von Neumann regular rings and SF-rings, Math. Japonica (6)(1986), 927-936.
  • M.B. Rege and S.C. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.
  • G. Renault, Anneaux reduits non commutatifs, J. Math. Pures Appl. 46(1967), 214.
  • B. Stenstr¨om, Rings of Quotients: An Introduction to the Methods of Ring Theory, Springer-Verlag, New York, 1975.
  • J. Zelmanowitz, Semiprime modules with maximum conditions, J. Algebra (3)(1973),554-574.
  • Mangesh B. Rege*and A. M. Buhphang** Department of Mathematics, North Eastern Hill University, Permanent Campus, Shillong-793022, Meghalaya, India.
  • E-mails:*mb29rege@yahoo.co.in ,**ardeline17@gmail.com
There are 23 citations in total.

Details

Other ID JA26YE46SB
Journal Section Articles
Authors

Mangesh B. Rege This is me

A. M. Buhphang This is me

Publication Date June 1, 2008
Published in Issue Year 2008 Volume: 3 Issue: 3

Cite

APA Rege, M. B., & Buhphang, A. M. (2008). ON REDUCED MODULES AND RINGS. International Electronic Journal of Algebra, 3(3), 56-74.
AMA Rege MB, Buhphang AM. ON REDUCED MODULES AND RINGS. IEJA. June 2008;3(3):56-74.
Chicago Rege, Mangesh B., and A. M. Buhphang. “ON REDUCED MODULES AND RINGS”. International Electronic Journal of Algebra 3, no. 3 (June 2008): 56-74.
EndNote Rege MB, Buhphang AM (June 1, 2008) ON REDUCED MODULES AND RINGS. International Electronic Journal of Algebra 3 3 56–74.
IEEE M. B. Rege and A. M. Buhphang, “ON REDUCED MODULES AND RINGS”, IEJA, vol. 3, no. 3, pp. 56–74, 2008.
ISNAD Rege, Mangesh B. - Buhphang, A. M. “ON REDUCED MODULES AND RINGS”. International Electronic Journal of Algebra 3/3 (June 2008), 56-74.
JAMA Rege MB, Buhphang AM. ON REDUCED MODULES AND RINGS. IEJA. 2008;3:56–74.
MLA Rege, Mangesh B. and A. M. Buhphang. “ON REDUCED MODULES AND RINGS”. International Electronic Journal of Algebra, vol. 3, no. 3, 2008, pp. 56-74.
Vancouver Rege MB, Buhphang AM. ON REDUCED MODULES AND RINGS. IEJA. 2008;3(3):56-74.