BibTex RIS Cite

P.P. PROPERTIES OF GROUP RINGS

Year 2008, Volume: 3 Issue: 3, 117 - 124, 01.06.2008

Abstract

A ring is called left p.p. if the left annihilator of each element of R is generated by an idempotent. We prove that for a ring R and a group G, if the group ring RG is left p.p. then so is RH for every subgroup H of G; if in addition G is finite then |G|−1 ∈ R. Counterexamples are given to answer the question whether the group ring RG is left p.p. if R is left p.p. and G is a finite group with |G|−1 ∈ R. Let G be a group acting on R as automorphisms. Some sufficient conditions are given for the fixed ring RG to be left p.p.

References

  • M. Auslander, On regular group rings, Proc. Amer. Math. Soc. 8(1957), 658–
  • S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J. 18 (1961) 13–25.
  • A. W. Chatters and W. M. Xue, On right duo p.p. rings, Glasgow Math. J. 32 (1990) 221–225.
  • J. L. Chen, Y. L. Li and Y. Q. Zhou, Morphic group rings, J. Pure Appl. Alg., (2006), 621–639.
  • S. Endo, Note on p.p. rings, Nagoya Math. J. 17 (1960) 167–170.
  • K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
  • C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p. rings, J. Pure Appl. Alg., 151 (2000) 215–226.
  • C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Alg., 167 (2002) 37–52.
  • I. Kaplansky, Rings of Operators, Benjamin, New York, (1965).
  • C. P. Milies and S. K. Sehgal, An Introduction to Group Rings,Kluwer Aca- demic Publishers, Dordrecht, (2002).
  • L. W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967) 656–658.
  • Z. Yi, Homological dimension of skew group rings and crossed products, J. Algebra, 164 (1994), 101–123.
  • Z. Yi and Y. Q. Zhou, Baer and quasi-Baer properties of group rings, J. Aus- tral. Math. Soc., in press. Libo Zan College of Math & Physics Nanjing University of Information Science & Technology, Nanjing, China E-mail: zanlibo@yahoo.com.cn Jianlong Chen Department of Mathematics Southeast University, Nanjing, China E-mail: jlchen@seu.edu.cn
Year 2008, Volume: 3 Issue: 3, 117 - 124, 01.06.2008

Abstract

References

  • M. Auslander, On regular group rings, Proc. Amer. Math. Soc. 8(1957), 658–
  • S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J. 18 (1961) 13–25.
  • A. W. Chatters and W. M. Xue, On right duo p.p. rings, Glasgow Math. J. 32 (1990) 221–225.
  • J. L. Chen, Y. L. Li and Y. Q. Zhou, Morphic group rings, J. Pure Appl. Alg., (2006), 621–639.
  • S. Endo, Note on p.p. rings, Nagoya Math. J. 17 (1960) 167–170.
  • K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
  • C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p. rings, J. Pure Appl. Alg., 151 (2000) 215–226.
  • C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Alg., 167 (2002) 37–52.
  • I. Kaplansky, Rings of Operators, Benjamin, New York, (1965).
  • C. P. Milies and S. K. Sehgal, An Introduction to Group Rings,Kluwer Aca- demic Publishers, Dordrecht, (2002).
  • L. W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967) 656–658.
  • Z. Yi, Homological dimension of skew group rings and crossed products, J. Algebra, 164 (1994), 101–123.
  • Z. Yi and Y. Q. Zhou, Baer and quasi-Baer properties of group rings, J. Aus- tral. Math. Soc., in press. Libo Zan College of Math & Physics Nanjing University of Information Science & Technology, Nanjing, China E-mail: zanlibo@yahoo.com.cn Jianlong Chen Department of Mathematics Southeast University, Nanjing, China E-mail: jlchen@seu.edu.cn
There are 13 citations in total.

Details

Other ID JA66ER27JG
Journal Section Articles
Authors

Libo Zan This is me

Jianlong Chen This is me

Publication Date June 1, 2008
Published in Issue Year 2008 Volume: 3 Issue: 3

Cite

APA Zan, L., & Chen, J. (2008). P.P. PROPERTIES OF GROUP RINGS. International Electronic Journal of Algebra, 3(3), 117-124.
AMA Zan L, Chen J. P.P. PROPERTIES OF GROUP RINGS. IEJA. June 2008;3(3):117-124.
Chicago Zan, Libo, and Jianlong Chen. “P.P. PROPERTIES OF GROUP RINGS”. International Electronic Journal of Algebra 3, no. 3 (June 2008): 117-24.
EndNote Zan L, Chen J (June 1, 2008) P.P. PROPERTIES OF GROUP RINGS. International Electronic Journal of Algebra 3 3 117–124.
IEEE L. Zan and J. Chen, “P.P. PROPERTIES OF GROUP RINGS”, IEJA, vol. 3, no. 3, pp. 117–124, 2008.
ISNAD Zan, Libo - Chen, Jianlong. “P.P. PROPERTIES OF GROUP RINGS”. International Electronic Journal of Algebra 3/3 (June 2008), 117-124.
JAMA Zan L, Chen J. P.P. PROPERTIES OF GROUP RINGS. IEJA. 2008;3:117–124.
MLA Zan, Libo and Jianlong Chen. “P.P. PROPERTIES OF GROUP RINGS”. International Electronic Journal of Algebra, vol. 3, no. 3, 2008, pp. 117-24.
Vancouver Zan L, Chen J. P.P. PROPERTIES OF GROUP RINGS. IEJA. 2008;3(3):117-24.