BibTex RIS Cite

AN APPROACH TO THE FAITH-MENAL CONJECTURE

Year 2007, Volume: 1 Issue: 1, 46 - 50, 01.06.2007

Abstract

The Faith-Menal conjecture is one of the three main open conjectures
on QF rings. It says that every right noetherian and left FP-injective
ring is QF. In this paper, it is proved that the conjecture is true if every
nonzero complement left ideal of the ring R is not small (or not singular).
Several known results are then obtained as corollaries.

References

  • F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer- Verlag, Berlin-Heidelberg-New York, 1992.
  • J.L. Chen and W.X. Li, On artiness of right CF rings, Comm. Algebra, 32(11) (2004), 4485-4494.
  • C. Faith and P. Menal, A counter example to a conjecture of Johns, Proc. Amer. Math. Soc., 116 (1992), 21-26.
  • C. Faith and P. Menal, The structure of Johns rings, Proc. Amer. Math. Soc., (1994), 1071-1081.
  • J. L. G´omez Pardo and P. A. Guil Asensio, Torsionless modules and rings with finite essential socle, Lecture Notes in Pure and Appl. Math., 201, New York, Marcel Dekker, 1998, 261-278.
  • K.R.Goodearl and R.B. Warfield, An Introduction to Noncommutative Noe- therian Rings, London Mathematical Society Student Texts 16, Cambridge University Press, 1989.
  • B. Johns, Annihilator conditions in noetherian rings, J. Algebra, 49 (1977), 224.
  • R.P. Kurshan, Rings whose cyclic modules have finitely genrated socle, J. Al- gebra, 15 (1970), 376-386.
  • T. Y. Lam, Lectures on Modules and Rings, Springer/Verlag, New York, 1998.
  • W.K. Nicholson and M.F.Yousif, Annihilators and the CS-condition, Glasgow Math. J., 40 (1998), 548-578.
  • W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge Univer- sity Press, Cambridge, 2003.
  • E. A. Rutter, Rings with the principal extension property, Comm. Algebra, (3) (1975), 203-212.
  • L. Shen and J.L. Chen, New characterizations of quasi-Frobenius rings, Comm. Algebra, 34 (2006), 2157-2165. Liang Shen
  • Department of Mathematics, Southeast University Nanjing 210096, P.R. China e-mail: lshen@seu.edu.cn
Year 2007, Volume: 1 Issue: 1, 46 - 50, 01.06.2007

Abstract

References

  • F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer- Verlag, Berlin-Heidelberg-New York, 1992.
  • J.L. Chen and W.X. Li, On artiness of right CF rings, Comm. Algebra, 32(11) (2004), 4485-4494.
  • C. Faith and P. Menal, A counter example to a conjecture of Johns, Proc. Amer. Math. Soc., 116 (1992), 21-26.
  • C. Faith and P. Menal, The structure of Johns rings, Proc. Amer. Math. Soc., (1994), 1071-1081.
  • J. L. G´omez Pardo and P. A. Guil Asensio, Torsionless modules and rings with finite essential socle, Lecture Notes in Pure and Appl. Math., 201, New York, Marcel Dekker, 1998, 261-278.
  • K.R.Goodearl and R.B. Warfield, An Introduction to Noncommutative Noe- therian Rings, London Mathematical Society Student Texts 16, Cambridge University Press, 1989.
  • B. Johns, Annihilator conditions in noetherian rings, J. Algebra, 49 (1977), 224.
  • R.P. Kurshan, Rings whose cyclic modules have finitely genrated socle, J. Al- gebra, 15 (1970), 376-386.
  • T. Y. Lam, Lectures on Modules and Rings, Springer/Verlag, New York, 1998.
  • W.K. Nicholson and M.F.Yousif, Annihilators and the CS-condition, Glasgow Math. J., 40 (1998), 548-578.
  • W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge Univer- sity Press, Cambridge, 2003.
  • E. A. Rutter, Rings with the principal extension property, Comm. Algebra, (3) (1975), 203-212.
  • L. Shen and J.L. Chen, New characterizations of quasi-Frobenius rings, Comm. Algebra, 34 (2006), 2157-2165. Liang Shen
  • Department of Mathematics, Southeast University Nanjing 210096, P.R. China e-mail: lshen@seu.edu.cn
There are 14 citations in total.

Details

Other ID JA95CC96KA
Journal Section Articles
Authors

Liang Shen This is me

Publication Date June 1, 2007
Published in Issue Year 2007 Volume: 1 Issue: 1

Cite

APA Shen, L. (2007). AN APPROACH TO THE FAITH-MENAL CONJECTURE. International Electronic Journal of Algebra, 1(1), 46-50.
AMA Shen L. AN APPROACH TO THE FAITH-MENAL CONJECTURE. IEJA. June 2007;1(1):46-50.
Chicago Shen, Liang. “AN APPROACH TO THE FAITH-MENAL CONJECTURE”. International Electronic Journal of Algebra 1, no. 1 (June 2007): 46-50.
EndNote Shen L (June 1, 2007) AN APPROACH TO THE FAITH-MENAL CONJECTURE. International Electronic Journal of Algebra 1 1 46–50.
IEEE L. Shen, “AN APPROACH TO THE FAITH-MENAL CONJECTURE”, IEJA, vol. 1, no. 1, pp. 46–50, 2007.
ISNAD Shen, Liang. “AN APPROACH TO THE FAITH-MENAL CONJECTURE”. International Electronic Journal of Algebra 1/1 (June 2007), 46-50.
JAMA Shen L. AN APPROACH TO THE FAITH-MENAL CONJECTURE. IEJA. 2007;1:46–50.
MLA Shen, Liang. “AN APPROACH TO THE FAITH-MENAL CONJECTURE”. International Electronic Journal of Algebra, vol. 1, no. 1, 2007, pp. 46-50.
Vancouver Shen L. AN APPROACH TO THE FAITH-MENAL CONJECTURE. IEJA. 2007;1(1):46-50.