Research Article
PDF EndNote BibTex RIS Cite

BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION

Year 2017, Volume 21, Issue 21, 127 - 136, 17.01.2017
https://doi.org/10.24330/ieja.296160

Abstract

In this paper, we characterize the bi-Amalgamations of small weak global dimension. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations

References

  • [1] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an
  • ideal, Bull. Iranian Math. Soc., 41(3) (2015), 625-632.
  • [2] S. Bazzoni and S. Glaz, Pr¨ufer rings, in: J. Brewer, S. Glaz, W. Heinzer,
  • B. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A
  • tribute to the work of Robert Gilmer, Springer, New York, (2006), 55–72.
  • [3] M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral
  • domains with special prime spectrum, Canad. J. Math., 29(4) (1977), 722-737.
  • [4] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Pr¨ufer conditions in an amalgamated
  • duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015),249-261.
  • [5] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
  • [6] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an
  • [7] M. D’Anna, C. A. Finacchiaro and M. Fontana, Amalgamated algebras along
  • an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin,(2009), 155–172.
  • [9] L. Fuchs, Uber die ideale arithmetischer ringe, Comment. Math. Helv., 23(1949), 334-341.
  • [10] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math., 1371, SpringerVerlag,Berlin, 1989.
  • [11] S. Greco and P. Salmon, Topics in m-Adic Topologies, Springer-Verlag, Berlin,Heidelberg, 1971.
  • [12] C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966),115-123.
  • [8] M. D’Anna, C. A. Finacchiaro and M. Fontana, Properties of chains of prime
  • ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9)
  • (2010), 1633–1641.

Year 2017, Volume 21, Issue 21, 127 - 136, 17.01.2017
https://doi.org/10.24330/ieja.296160

Abstract

References

  • [1] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an
  • ideal, Bull. Iranian Math. Soc., 41(3) (2015), 625-632.
  • [2] S. Bazzoni and S. Glaz, Pr¨ufer rings, in: J. Brewer, S. Glaz, W. Heinzer,
  • B. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A
  • tribute to the work of Robert Gilmer, Springer, New York, (2006), 55–72.
  • [3] M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral
  • domains with special prime spectrum, Canad. J. Math., 29(4) (1977), 722-737.
  • [4] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Pr¨ufer conditions in an amalgamated
  • duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015),249-261.
  • [5] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
  • [6] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an
  • [7] M. D’Anna, C. A. Finacchiaro and M. Fontana, Amalgamated algebras along
  • an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin,(2009), 155–172.
  • [9] L. Fuchs, Uber die ideale arithmetischer ringe, Comment. Math. Helv., 23(1949), 334-341.
  • [10] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math., 1371, SpringerVerlag,Berlin, 1989.
  • [11] S. Greco and P. Salmon, Topics in m-Adic Topologies, Springer-Verlag, Berlin,Heidelberg, 1971.
  • [12] C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966),115-123.
  • [8] M. D’Anna, C. A. Finacchiaro and M. Fontana, Properties of chains of prime
  • ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9)
  • (2010), 1633–1641.

Details

Subjects Mathematics
Journal Section Articles
Authors

Mohammed TAMEKKANTE This is me


El Mehdi BOUBA This is me

Publication Date January 17, 2017
Published in Issue Year 2017, Volume 21, Issue 21

Cite

Bibtex @research article { ieja296160, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {1710 Sokak, No:41, Batikent/Ankara}, publisher = {Abdullah HARMANCI}, year = {2017}, volume = {21}, number = {21}, pages = {127 - 136}, doi = {10.24330/ieja.296160}, title = {BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION}, key = {cite}, author = {Tamekkante, Mohammed and Bouba, El Mehdi} }
APA Tamekkante, M. & Bouba, E. M. (2017). BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION . International Electronic Journal of Algebra , 21 (21) , 127-136 . DOI: 10.24330/ieja.296160
MLA Tamekkante, M. , Bouba, E. M. "BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION" . International Electronic Journal of Algebra 21 (2017 ): 127-136 <https://dergipark.org.tr/en/pub/ieja/issue/27921/296160>
Chicago Tamekkante, M. , Bouba, E. M. "BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION". International Electronic Journal of Algebra 21 (2017 ): 127-136
RIS TY - JOUR T1 - BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION AU - MohammedTamekkante, El MehdiBouba Y1 - 2017 PY - 2017 N1 - doi: 10.24330/ieja.296160 DO - 10.24330/ieja.296160 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 127 EP - 136 VL - 21 IS - 21 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.296160 UR - https://doi.org/10.24330/ieja.296160 Y2 - 2016 ER -
EndNote %0 International Electronic Journal of Algebra BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION %A Mohammed Tamekkante , El Mehdi Bouba %T BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION %D 2017 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 21 %N 21 %R doi: 10.24330/ieja.296160 %U 10.24330/ieja.296160
ISNAD Tamekkante, Mohammed , Bouba, El Mehdi . "BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION". International Electronic Journal of Algebra 21 / 21 (January 2017): 127-136 . https://doi.org/10.24330/ieja.296160
AMA Tamekkante M. , Bouba E. M. BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION. IEJA. 2017; 21(21): 127-136.
Vancouver Tamekkante M. , Bouba E. M. BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION. International Electronic Journal of Algebra. 2017; 21(21): 127-136.
IEEE M. Tamekkante and E. M. Bouba , "BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION", International Electronic Journal of Algebra, vol. 21, no. 21, pp. 127-136, Jan. 2017, doi:10.24330/ieja.296160