Research Article
BibTex RIS Cite

Block Decomposition For Modules

Year 2017, Volume: 22 Issue: 22, 187 - 201, 11.07.2017
https://doi.org/10.24330/ieja.325944

Abstract

Block decomposition for rings has been introduced and
shown to be unique in the literature (see [T. Y. Lam, Graduate
Texts in Mathematics, 131, Springer-Verlag, New York, 1991]).
Applying annihilator submodules, we extend this definition to
modules and show that every  module $M$ has a unique block
decomposition $M=\bigoplus_{i=1}^nM_i$ where each $M_i$ is an
annihilator submodule.  We also show that the block decomposition
for any ring $R$ and the
 block decomposition for the module $R_R$, are identical. Block decomposition provides us with a decomposition for $\edmp{M}$ because $\edmp{M}\iso\prod_{i=1}^n\edmp{M_i}$.
 

References

  • J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math., 58(1) (1975), 1-13.
  • K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommuta- tive Noetherian Rings, Second Edition, London Mathematical Society Student Texts, 61, Cambridge University Press, Cambridge, 2004.
  • H. Khabazian, Existence and uniqueness of a certain type of subdirect product, to appear in Casp. J. Math. Sci.
  • T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
Year 2017, Volume: 22 Issue: 22, 187 - 201, 11.07.2017
https://doi.org/10.24330/ieja.325944

Abstract

References

  • J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math., 58(1) (1975), 1-13.
  • K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommuta- tive Noetherian Rings, Second Edition, London Mathematical Society Student Texts, 61, Cambridge University Press, Cambridge, 2004.
  • H. Khabazian, Existence and uniqueness of a certain type of subdirect product, to appear in Casp. J. Math. Sci.
  • T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
There are 4 citations in total.

Details

Subjects Mathematical Sciences
Journal Section Articles
Authors

H. Khabazian This is me

Publication Date July 11, 2017
Published in Issue Year 2017 Volume: 22 Issue: 22

Cite

APA Khabazian, H. (2017). Block Decomposition For Modules. International Electronic Journal of Algebra, 22(22), 187-201. https://doi.org/10.24330/ieja.325944
AMA Khabazian H. Block Decomposition For Modules. IEJA. July 2017;22(22):187-201. doi:10.24330/ieja.325944
Chicago Khabazian, H. “Block Decomposition For Modules”. International Electronic Journal of Algebra 22, no. 22 (July 2017): 187-201. https://doi.org/10.24330/ieja.325944.
EndNote Khabazian H (July 1, 2017) Block Decomposition For Modules. International Electronic Journal of Algebra 22 22 187–201.
IEEE H. Khabazian, “Block Decomposition For Modules”, IEJA, vol. 22, no. 22, pp. 187–201, 2017, doi: 10.24330/ieja.325944.
ISNAD Khabazian, H. “Block Decomposition For Modules”. International Electronic Journal of Algebra 22/22 (July 2017), 187-201. https://doi.org/10.24330/ieja.325944.
JAMA Khabazian H. Block Decomposition For Modules. IEJA. 2017;22:187–201.
MLA Khabazian, H. “Block Decomposition For Modules”. International Electronic Journal of Algebra, vol. 22, no. 22, 2017, pp. 187-01, doi:10.24330/ieja.325944.
Vancouver Khabazian H. Block Decomposition For Modules. IEJA. 2017;22(22):187-201.