Research Article
BibTex RIS Cite
Year 2018, Volume: 24 Issue: 24, 1 - 11, 05.07.2018
https://doi.org/10.24330/ieja.440117

Abstract

References

  • A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197-211.
  • P. A. Freidman, K teorii radikala assotsiativnogo kol'tsa, Izv. V.U.Z. Matematika, 3(4) (1958), 225-232.
  • L. Fuchs, Abelian Groups, Springer Monographs in Mathematics, Springer, Cham, 2015.
  • B. J. Gardner, Torsion classes and pure subgroups, Paci c. J. Math., 33 (1970), 109-116.
  • B. J. Gardner, Elementary radical classes, Int. Electron. J. Algebra, 23 (2018), 25-41.
  • B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Monographs and Textbooks in Pure and Applied Mathematics, 261, Marcel Dekker, Inc., New York, 2004.
  • G. Gratzer, H. Lakser and J. P lonka, Joins and direct products of equational classes, Canad. Math. Bull., 12 (1969), 741-744.
  • T. K. Hu, Locally equational classes of universal algebras, Chinese J. Math., 1(2) (1973), 143-165.
  • T. Kosan, Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra, 220(2) (2016), 633-646.
  • N. V. Loi, Essentially closed radical classes, J. Austral. Math. Soc. Ser. A, 35(1) (1983), 132-142.
  • A. I. Mal'tsev, Obumnozhenii klassov algebraicheskikh sistem, Sibirsii Mat. Zh., 8 (1967), 346-365.
  • N. R. McConnell and T. Stokes, Generalising quasiregularity for rings, Austral. Math. Soc. Gaz., 25(5) (1998), 250-252.
  • H. Neumann, Varieties of Groups, Springer-Verlag, New York, Inc., New York, 1967.
  • W. K. Nicholson and Y. Zhou, Clean general rings, J. Algebra, 291(1) (2005), 297-311.
  • P. N. Stewart, Semi-simple radical classes, Paci c. J. Math., 32 (1970), 249- 254.

A NOTE ON MAL'TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES

Year 2018, Volume: 24 Issue: 24, 1 - 11, 05.07.2018
https://doi.org/10.24330/ieja.440117

Abstract

A radical class R of rings is elementary if it contains precisely
those rings whose singly generated subrings are in R. Many examples of ele-
mentary radical classes are presented, and all those which are either contained
in the Jacobson radical class or disjoint from it are described. There is a dis-
cussion of Mal'tsev products of radical classes in general, in which it is shown,
among other things, that a product of elementary radical classes need not be
a radical class, and if it is, it need not be elementary.

References

  • A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197-211.
  • P. A. Freidman, K teorii radikala assotsiativnogo kol'tsa, Izv. V.U.Z. Matematika, 3(4) (1958), 225-232.
  • L. Fuchs, Abelian Groups, Springer Monographs in Mathematics, Springer, Cham, 2015.
  • B. J. Gardner, Torsion classes and pure subgroups, Paci c. J. Math., 33 (1970), 109-116.
  • B. J. Gardner, Elementary radical classes, Int. Electron. J. Algebra, 23 (2018), 25-41.
  • B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Monographs and Textbooks in Pure and Applied Mathematics, 261, Marcel Dekker, Inc., New York, 2004.
  • G. Gratzer, H. Lakser and J. P lonka, Joins and direct products of equational classes, Canad. Math. Bull., 12 (1969), 741-744.
  • T. K. Hu, Locally equational classes of universal algebras, Chinese J. Math., 1(2) (1973), 143-165.
  • T. Kosan, Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra, 220(2) (2016), 633-646.
  • N. V. Loi, Essentially closed radical classes, J. Austral. Math. Soc. Ser. A, 35(1) (1983), 132-142.
  • A. I. Mal'tsev, Obumnozhenii klassov algebraicheskikh sistem, Sibirsii Mat. Zh., 8 (1967), 346-365.
  • N. R. McConnell and T. Stokes, Generalising quasiregularity for rings, Austral. Math. Soc. Gaz., 25(5) (1998), 250-252.
  • H. Neumann, Varieties of Groups, Springer-Verlag, New York, Inc., New York, 1967.
  • W. K. Nicholson and Y. Zhou, Clean general rings, J. Algebra, 291(1) (2005), 297-311.
  • P. N. Stewart, Semi-simple radical classes, Paci c. J. Math., 32 (1970), 249- 254.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

B. J. Gardner This is me

Publication Date July 5, 2018
Published in Issue Year 2018 Volume: 24 Issue: 24

Cite

APA Gardner, B. J. (2018). A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES. International Electronic Journal of Algebra, 24(24), 1-11. https://doi.org/10.24330/ieja.440117
AMA Gardner BJ. A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES. IEJA. July 2018;24(24):1-11. doi:10.24330/ieja.440117
Chicago Gardner, B. J. “A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES”. International Electronic Journal of Algebra 24, no. 24 (July 2018): 1-11. https://doi.org/10.24330/ieja.440117.
EndNote Gardner BJ (July 1, 2018) A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES. International Electronic Journal of Algebra 24 24 1–11.
IEEE B. J. Gardner, “A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES”, IEJA, vol. 24, no. 24, pp. 1–11, 2018, doi: 10.24330/ieja.440117.
ISNAD Gardner, B. J. “A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES”. International Electronic Journal of Algebra 24/24 (July 2018), 1-11. https://doi.org/10.24330/ieja.440117.
JAMA Gardner BJ. A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES. IEJA. 2018;24:1–11.
MLA Gardner, B. J. “A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES”. International Electronic Journal of Algebra, vol. 24, no. 24, 2018, pp. 1-11, doi:10.24330/ieja.440117.
Vancouver Gardner BJ. A NOTE ON MAL’TSEV-NEUMANN PRODUCTS OF RADICAL CLASSES. IEJA. 2018;24(24):1-11.