Research Article
BibTex RIS Cite
Year 2019, Volume: 26 Issue: 26, 87 - 94, 11.07.2019
https://doi.org/10.24330/ieja.586962

Abstract

References

  • A. Atazadeh, M. Sedghi and R. Naghipour, On the annihilators and attached primes of top local cohomology modules, Arch. Math., 102(3) (2014), 225-236.
  • K. Bahmanpour, J. A'zami and Gh. Ghasemi, On the annihilators of local cohomology modules, J. Algebra, 363 (2012), 8-13.
  • M. P. Brodmann and R. Y. Sharp, Local Cohomology: an Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Math- ematics, 60, Cambridge University Press, Cambridge, 1998.
  • L. Chu, Top local cohomology modules with respect to a pair of ideals, Proc. Amer. Math. Soc., 139(3) (2011), 777-782.
  • L. Chu and W. Wang, Some results on local cohomology modules de ned by a pair of ideals, J. Math. Kyoto Univ., 49 (2009), 193-200.
  • C. Huneke and J. Koh, Co niteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc., 110(3) (1991), 421-429.
  • L. R. Lynch, Annihilators of top local cohomology, Comm. Algebra, 40(2) (2012), 542-551.
  • G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math., 113(1) (1993), 41-55.
  • L. T. Nhan and T. D. M. Chau, On the top local cohomology modules, J. Algebra 349 (2012), 342-352.
  • Sh. Payrovi and S. Karimi, Upper bounds and attached primes of top local cohomology modules de ned by a pair of ideals, J. Hyperstruct., 3(2) (2014), 101-107.
  • P. Schenzel, Cohomological annihilators, Math. Proc. Cambridge Philos. Soc. 91(3) (1982), 345-350.
  • R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support de ned by a pair of ideals, J. Pure Appl. Algebra, 213(4) (2009), 582-600.

ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

Year 2019, Volume: 26 Issue: 26, 87 - 94, 11.07.2019
https://doi.org/10.24330/ieja.586962

Abstract

Let  $R$ be a commutative Noetherian ring,  $I, J$ two proper ideals of
$R$ and let $M$ be a non-zero finitely generated  $R$-module with $c={\rm cd}(I,J,M)$.
In this paper, we first  introduce $T_R(I,J,M)$ as the largest submodule of $M$
with the property that ${\rm cd}(I,J,T_R(I,J,M))<c$ and we describe it in terms of the reduced primary
decomposition of zero submodule of $M$. It is shown that
 ${\rm Ann}_R(H_{I,J}^d(M))={\rm Ann}_R(M/{T_R(I,J,M)})$ and ${\rm Ann}_R(H_{I}^d(M))={\rm Ann}_R(H_{I,J}^d(M))$,
whenever $R$ is a  local ring, $M$ has dimension $d$ with $H_{I,J}^d(M)\\\neq0$ and
$J^tM\subseteq T_R(I,M)$ for some positive integer $t$.

References

  • A. Atazadeh, M. Sedghi and R. Naghipour, On the annihilators and attached primes of top local cohomology modules, Arch. Math., 102(3) (2014), 225-236.
  • K. Bahmanpour, J. A'zami and Gh. Ghasemi, On the annihilators of local cohomology modules, J. Algebra, 363 (2012), 8-13.
  • M. P. Brodmann and R. Y. Sharp, Local Cohomology: an Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Math- ematics, 60, Cambridge University Press, Cambridge, 1998.
  • L. Chu, Top local cohomology modules with respect to a pair of ideals, Proc. Amer. Math. Soc., 139(3) (2011), 777-782.
  • L. Chu and W. Wang, Some results on local cohomology modules de ned by a pair of ideals, J. Math. Kyoto Univ., 49 (2009), 193-200.
  • C. Huneke and J. Koh, Co niteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc., 110(3) (1991), 421-429.
  • L. R. Lynch, Annihilators of top local cohomology, Comm. Algebra, 40(2) (2012), 542-551.
  • G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math., 113(1) (1993), 41-55.
  • L. T. Nhan and T. D. M. Chau, On the top local cohomology modules, J. Algebra 349 (2012), 342-352.
  • Sh. Payrovi and S. Karimi, Upper bounds and attached primes of top local cohomology modules de ned by a pair of ideals, J. Hyperstruct., 3(2) (2014), 101-107.
  • P. Schenzel, Cohomological annihilators, Math. Proc. Cambridge Philos. Soc. 91(3) (1982), 345-350.
  • R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support de ned by a pair of ideals, J. Pure Appl. Algebra, 213(4) (2009), 582-600.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Susan Karimi This is me

Shiroyeh Payrovi This is me

Publication Date July 11, 2019
Published in Issue Year 2019 Volume: 26 Issue: 26

Cite

APA Karimi, S., & Payrovi, S. (2019). ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS. International Electronic Journal of Algebra, 26(26), 87-94. https://doi.org/10.24330/ieja.586962
AMA Karimi S, Payrovi S. ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS. IEJA. July 2019;26(26):87-94. doi:10.24330/ieja.586962
Chicago Karimi, Susan, and Shiroyeh Payrovi. “ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS”. International Electronic Journal of Algebra 26, no. 26 (July 2019): 87-94. https://doi.org/10.24330/ieja.586962.
EndNote Karimi S, Payrovi S (July 1, 2019) ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS. International Electronic Journal of Algebra 26 26 87–94.
IEEE S. Karimi and S. Payrovi, “ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS”, IEJA, vol. 26, no. 26, pp. 87–94, 2019, doi: 10.24330/ieja.586962.
ISNAD Karimi, Susan - Payrovi, Shiroyeh. “ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS”. International Electronic Journal of Algebra 26/26 (July 2019), 87-94. https://doi.org/10.24330/ieja.586962.
JAMA Karimi S, Payrovi S. ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS. IEJA. 2019;26:87–94.
MLA Karimi, Susan and Shiroyeh Payrovi. “ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS”. International Electronic Journal of Algebra, vol. 26, no. 26, 2019, pp. 87-94, doi:10.24330/ieja.586962.
Vancouver Karimi S, Payrovi S. ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS. IEJA. 2019;26(26):87-94.