Research Article
PDF BibTex RIS Cite

Year 2019, Volume: 26 Issue: 26, 191 - 203, 11.07.2019
https://doi.org/10.24330/ieja.587053

Abstract

References

  • G. Abrams, P. Ara and M. S. Molina, Leavitt Path Algebras, Lecture Notes in Mathematics, 2191, Springer, London, 2017.
  • G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra, 293(2) (2005), 319-334.
  • G. Abrams and G. Aranda Pino, The Leavitt path algebras of arbitrary graphs, Houston J. Math., 34(2) (2008), 423-442.
  • G. Abrams, G. Aranda Pino and M. S. Molina, Finite dimensional Leavitt path algebras, J. Pure Appl. Algebra, 209(3) (2007), 753-762.
  • G. Abrams and Z. Mesyan, Simple Lie algebras arising from Leavitt path algebra, J. Pure Appl. Algebra, 216(10) (2012), 2302-2313.
  • A. Alahmedi and H. Alsulami, On the simplicity of the Lie algebra of a Leavitt path algebra, Comm. Algebra, 44(9) (2016), 4114-4120.
  • A. Alahmedi, H. Alsulami, S. K. Jain and E. Zelmanov, Leavitt path algebras of nite Gelfand-Kirillov dimension, J. Algebra Appl., 11(6) (2012), 1250225 (6 pp).
  • A. Alahmedi, H. Alsulami, S. K. Jain and E. Zelmanov, Structure of Leavitt path algebras of polynomial growth, Proc. Natl. Acad. Sci. USA, 110(38) (2013), 15222-15224.
  • P. Ara, M. A. Moreno and E. Pardo, Nonstable K-theory for graph algebras, Algebr. Represent. Theory, 10(2) (2007), 157-178.
  • G. Aranda Pino and K. Crow, The center of a Leavitt path algebra, Rev. Mat. Iberoam., 27(2) (2011), 621-644.
  • C. Gil Canto and A. Nasr-Isfahani, The maximal commutative subalgebra of a Leavitt path algebra, arXiv:1510.03992v1 [math.RA].
  • P. Kanwar, M. Khatkar and R. K. Sharma, Basic one sided ideals of Leavitt path algebras over commutative rings, preprint, submitted.
  • [H. Larki, Ideal structure of Leavitt path algebras with coeffcients in a unital commutative ring, Comm. Algebra, 43(12) (2015), 5031-5058.
  • V. Lopatkin and T. G. Nam, On the homological dimensions of Leavitt path algebras with coeffcients in commutative rings, J. Algebra, 481 (2017), 273- 292.
  • Z. Mesyan, Commutator Leavitt path algebras, Algebr. Represent. Theory, 16(5) (2013), 1207-1232.
  • M. Tomforde, Leavitt path algebras with coeffcients in a commutative ring, J. Pure Appl. Algebra, 215(4) (2011), 471-484.

ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS

Year 2019, Volume: 26 Issue: 26, 191 - 203, 11.07.2019
https://doi.org/10.24330/ieja.587053

Abstract

In this article, basic ideals in a Leavitt path algebra over a com-
mutative unital ring are studied. It is shown that for a nite acyclic graph E
and a commutative unital ring R, the Leavitt path algebra LR(E) is a direct
sum of minimal basic ideals and that for a commutative ring R and a graph
E satisfying Condition (L), the Leavitt path algebra LR(E) has no non-zero
nilpotent basic ideals. Uniqueness theorems for Leavitt path algebras over
commutative unital rings are also discussed.

References

  • G. Abrams, P. Ara and M. S. Molina, Leavitt Path Algebras, Lecture Notes in Mathematics, 2191, Springer, London, 2017.
  • G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra, 293(2) (2005), 319-334.
  • G. Abrams and G. Aranda Pino, The Leavitt path algebras of arbitrary graphs, Houston J. Math., 34(2) (2008), 423-442.
  • G. Abrams, G. Aranda Pino and M. S. Molina, Finite dimensional Leavitt path algebras, J. Pure Appl. Algebra, 209(3) (2007), 753-762.
  • G. Abrams and Z. Mesyan, Simple Lie algebras arising from Leavitt path algebra, J. Pure Appl. Algebra, 216(10) (2012), 2302-2313.
  • A. Alahmedi and H. Alsulami, On the simplicity of the Lie algebra of a Leavitt path algebra, Comm. Algebra, 44(9) (2016), 4114-4120.
  • A. Alahmedi, H. Alsulami, S. K. Jain and E. Zelmanov, Leavitt path algebras of nite Gelfand-Kirillov dimension, J. Algebra Appl., 11(6) (2012), 1250225 (6 pp).
  • A. Alahmedi, H. Alsulami, S. K. Jain and E. Zelmanov, Structure of Leavitt path algebras of polynomial growth, Proc. Natl. Acad. Sci. USA, 110(38) (2013), 15222-15224.
  • P. Ara, M. A. Moreno and E. Pardo, Nonstable K-theory for graph algebras, Algebr. Represent. Theory, 10(2) (2007), 157-178.
  • G. Aranda Pino and K. Crow, The center of a Leavitt path algebra, Rev. Mat. Iberoam., 27(2) (2011), 621-644.
  • C. Gil Canto and A. Nasr-Isfahani, The maximal commutative subalgebra of a Leavitt path algebra, arXiv:1510.03992v1 [math.RA].
  • P. Kanwar, M. Khatkar and R. K. Sharma, Basic one sided ideals of Leavitt path algebras over commutative rings, preprint, submitted.
  • [H. Larki, Ideal structure of Leavitt path algebras with coeffcients in a unital commutative ring, Comm. Algebra, 43(12) (2015), 5031-5058.
  • V. Lopatkin and T. G. Nam, On the homological dimensions of Leavitt path algebras with coeffcients in commutative rings, J. Algebra, 481 (2017), 273- 292.
  • Z. Mesyan, Commutator Leavitt path algebras, Algebr. Represent. Theory, 16(5) (2013), 1207-1232.
  • M. Tomforde, Leavitt path algebras with coeffcients in a commutative ring, J. Pure Appl. Algebra, 215(4) (2011), 471-484.

Details

Primary Language English
Journal Section Articles
Authors

Pramod KANWAR


Meenu KHATKAR This is me


R. K. SHARMA This is me

Publication Date July 11, 2019
Published in Issue Year 2019 Volume: 26 Issue: 26

Cite

APA
KANWAR, P., KHATKAR, M., & SHARMA, R. K. (2019). ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS. International Electronic Journal of Algebra, 26(26), 191-203. https://doi.org/10.24330/ieja.587053
MLA
KANWAR, Pramod et al. “ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra, vol. 26, no. 26, 2019, pp. 191-03, doi:10.24330/ieja.587053.
Chicago
KANWAR, Pramod, Meenu KHATKAR, and R. K. SHARMA. “ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra 26, no. 26 (July 2019): 191-203. https://doi.org/10.24330/ieja.587053.
EndNote
KANWAR P, KHATKAR M, SHARMA RK (July 1, 2019) ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS. International Electronic Journal of Algebra 26 26 191–203.
ISNAD
KANWAR, Pramod et al. “ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra 26/26 (July 2019), 191-203. https://doi.org/10.24330/ieja.587053.
AMA
KANWAR P, KHATKAR M, SHARMA RK. ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS. IEJA. July 2019;26(26):191-203. doi:10.24330/ieja.587053
Vancouver
KANWAR P, KHATKAR M, SHARMA RK. ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS. IEJA. 2019;26(26):191-203.
IEEE
P. KANWAR, M. KHATKAR, and R. K. SHARMA, “ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS”, IEJA, vol. 26, no. 26, pp. 191–203, 2019, doi: 10.24330/ieja.587053.
JAMA
KANWAR P, KHATKAR M, SHARMA RK. ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS. IEJA. 2019;26:191–203.