For a given real polynomial $f$ without nonnegative roots we study monic integer polynomials $g$ such that the product $g f$ has positive (nonnegative, respectively) coefficients. We show that monic integer polynomials~$g$ with these properties can effectively be computed, and we give lower and upper bounds for their degrees. $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors | |
Publication Date | July 14, 2020 |
Published in Issue | Year 2020 Volume: 28 Issue: 28 |