Abstract of the paper: "G. Picavet and M. Picavet-L'Hermitte, Modules with finitely many submodules, Int. Electron. J. Algebra, 19 (2016), 119-131.":
We characterize ring extensions $R \subset S$ having FCP (FIP), where $S$ is the idealization of some $R$-module. As a by-product we exhibit characterizations of the modules that have finitely many submodules. Our tools are minimal ring morphisms, while Artinian conditions on rings are ubiquitous. $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors | |
Publication Date | July 14, 2020 |
Published in Issue | Year 2020 Volume: 28 Issue: 28 |