Research Article
BibTex RIS Cite
Year 2021, Volume: 29 Issue: 29, 120 - 133, 05.01.2021
https://doi.org/10.24330/ieja.772801

Abstract

References

  • G. E. Andrews, L. Guo, W. Keigher and K. Ono, Baxter algebras and Hopf algebras, Trans. Amer. Math. Soc., 355(11) (2003), 4639-4656.
  • P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton Uni- versity Press, 1978.
  • V. M. Buchstaber, Semigroups of maps into groups, operator doubles, and complex cobordisms, Amer. Math. Soc. Trans., Series 2, 170 (1995), 9-35.
  • V. M. Buchstaber and A. N. Kholodov, Groups of formal diffeomorphisms of the superline, generating functions for sequences of polynomials, and functional equations, Izv. Akad. Nauk SSSR Ser. Mat., 53(5) (1989), 944-970.
  • V. M. Buchstaber and A. V. Shokurov, The Landweber-Novikov algebra and formal vector fields on the line, Funktsional. Anal. i Prilozhen, 12(3) (1978), 1-11.
  • L. Guo, Baxter algebras and the umbral calculus, Adv. in Appl. Math., 27 (2001), 405-426.
  • W. Keigher, On the ring of Hurwitz series, Comm. Algebra, 25 (1997), 1845- 1859.
  • S. Roman and G. C. Rota, The umbral calculus, Adv. Math., 27(2) (1978), 95-188.
  • W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, 1984.
  • G. Walker and R. M. W. Wood, Polynomials and the mod-2 Steenrod Algebra, Volume 1, The Peterson hit problem, Cambridge University Press, 2018.
  • R. M. W.Wood, Differential operations and the Steenrod algebra, Proc. London Math. Soc., 75(3) (1997), 194-220.

SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS

Year 2021, Volume: 29 Issue: 29, 120 - 133, 05.01.2021
https://doi.org/10.24330/ieja.772801

Abstract

Let $C$ be a commutative ring and $C[x_1,x_2,\ldots]$ the polynomial ring in a countable number of variables $x_i$ of degree 1. Suppose that the differential operator $d^1=\sum_i x_{i} \partial_{i} $ acts on $C[x_1,x_2,\ldots]$. Let $\mathbb{Z}_p$ be the $p$--adic integers, $K$ the extension field of the $p$--adic numbers $\mathbb{Q}_p$, and $\mathbb{F}_2$ the 2-element filed. In this article, first, the $C$-algebra $\mathcal{A}_1(C)$ of differential operators is constructed by the divided differential operators $(d^1)^{\vee k}/k!$ as its generators, where $\vee$ stands for the wedge product. Then, the free Baxter algebra of weight $1$ over $\varnothing$, the $\lambda$--divided power Hopf algebra $\mathcal{A}_\lambda$, the algebra $C(\mathbb{Z}_p,K)$ of continuous functions from $\mathbb{Z}_p$ to $K$, and the algebra of all $\mathbb{F}_2$--valued continuous functions on the ternary Cantor set are represented in terms of the differential operators algebra $\mathcal{A}_1(C)$.

References

  • G. E. Andrews, L. Guo, W. Keigher and K. Ono, Baxter algebras and Hopf algebras, Trans. Amer. Math. Soc., 355(11) (2003), 4639-4656.
  • P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton Uni- versity Press, 1978.
  • V. M. Buchstaber, Semigroups of maps into groups, operator doubles, and complex cobordisms, Amer. Math. Soc. Trans., Series 2, 170 (1995), 9-35.
  • V. M. Buchstaber and A. N. Kholodov, Groups of formal diffeomorphisms of the superline, generating functions for sequences of polynomials, and functional equations, Izv. Akad. Nauk SSSR Ser. Mat., 53(5) (1989), 944-970.
  • V. M. Buchstaber and A. V. Shokurov, The Landweber-Novikov algebra and formal vector fields on the line, Funktsional. Anal. i Prilozhen, 12(3) (1978), 1-11.
  • L. Guo, Baxter algebras and the umbral calculus, Adv. in Appl. Math., 27 (2001), 405-426.
  • W. Keigher, On the ring of Hurwitz series, Comm. Algebra, 25 (1997), 1845- 1859.
  • S. Roman and G. C. Rota, The umbral calculus, Adv. Math., 27(2) (1978), 95-188.
  • W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, 1984.
  • G. Walker and R. M. W. Wood, Polynomials and the mod-2 Steenrod Algebra, Volume 1, The Peterson hit problem, Cambridge University Press, 2018.
  • R. M. W.Wood, Differential operations and the Steenrod algebra, Proc. London Math. Soc., 75(3) (1997), 194-220.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ghorban Soleymanpour This is me

Ali S. Janfada This is me

Publication Date January 5, 2021
Published in Issue Year 2021 Volume: 29 Issue: 29

Cite

APA Soleymanpour, G., & Janfada, A. S. (2021). SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS. International Electronic Journal of Algebra, 29(29), 120-133. https://doi.org/10.24330/ieja.772801
AMA Soleymanpour G, Janfada AS. SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS. IEJA. January 2021;29(29):120-133. doi:10.24330/ieja.772801
Chicago Soleymanpour, Ghorban, and Ali S. Janfada. “SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS”. International Electronic Journal of Algebra 29, no. 29 (January 2021): 120-33. https://doi.org/10.24330/ieja.772801.
EndNote Soleymanpour G, Janfada AS (January 1, 2021) SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS. International Electronic Journal of Algebra 29 29 120–133.
IEEE G. Soleymanpour and A. S. Janfada, “SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS”, IEJA, vol. 29, no. 29, pp. 120–133, 2021, doi: 10.24330/ieja.772801.
ISNAD Soleymanpour, Ghorban - Janfada, Ali S. “SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS”. International Electronic Journal of Algebra 29/29 (January 2021), 120-133. https://doi.org/10.24330/ieja.772801.
JAMA Soleymanpour G, Janfada AS. SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS. IEJA. 2021;29:120–133.
MLA Soleymanpour, Ghorban and Ali S. Janfada. “SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS”. International Electronic Journal of Algebra, vol. 29, no. 29, 2021, pp. 120-33, doi:10.24330/ieja.772801.
Vancouver Soleymanpour G, Janfada AS. SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS. IEJA. 2021;29(29):120-33.