Research Article
BibTex RIS Cite

TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA

Year 2021, Volume: 29 Issue: 29, 175 - 186, 05.01.2021
https://doi.org/10.24330/ieja.852178

Abstract

We consider the BGG category $\O$ of a quantized universal
enveloping algebra $U_q(\mathfrak{g})$. We call a module $M\in
\O$ tensor-closed if $M\otimes N\in\O$ for any $N\in \O$. In this
paper we prove that $M\in \O$ is tensor-closed if and only if $M$
is finite dimensional. The method used in this paper applies to
the unquantized case as well.

References

  • H. H. Andersen and V. Mazorchuk, Category $\mathscr{O}$ for quantum groups, J. Eur. Math. Soc., 17(2) (2015), 405-431.
  • J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Second printing, revised, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1978.
  • J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category $\mathscr{O}$, Graduate Studies in Mathematics, 94, American Mathematical Society, Providence, RI, 2008.
  • J. E. Humphreys, Tensor-closed objects of the BGG category $\mathscr{O}$, (2015), Preprint available on the author's website: http://people.math.umass.edu / jeh/pub/ tensor.pdf.
  • A. Joseph, Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, (3) 29, Springer-Verlag, Berlin, 1995.
  • V. A. Lunts and A. L. Rosenberg, Localization for quantum groups, Selecta Math. (N.S.), 5(1) (1999), 123-159.
  • C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, (2017), arXiv:1705.05661.
  • Z. Wei, Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE, (2019), Preprint available on the author's website: https://drive.google.com/file/d/1ZogGH4Rfenq7AXTvxOdsoqGbSHCbfrjr/view.
  • Z. Wei, Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE, (2019), Preprint available on the author's website: https://drive.google.com/file/d/1ZogGH4Rfenq7AXTvxOdsoqGbSHCbfrjr/view.
Year 2021, Volume: 29 Issue: 29, 175 - 186, 05.01.2021
https://doi.org/10.24330/ieja.852178

Abstract

References

  • H. H. Andersen and V. Mazorchuk, Category $\mathscr{O}$ for quantum groups, J. Eur. Math. Soc., 17(2) (2015), 405-431.
  • J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Second printing, revised, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1978.
  • J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category $\mathscr{O}$, Graduate Studies in Mathematics, 94, American Mathematical Society, Providence, RI, 2008.
  • J. E. Humphreys, Tensor-closed objects of the BGG category $\mathscr{O}$, (2015), Preprint available on the author's website: http://people.math.umass.edu / jeh/pub/ tensor.pdf.
  • A. Joseph, Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, (3) 29, Springer-Verlag, Berlin, 1995.
  • V. A. Lunts and A. L. Rosenberg, Localization for quantum groups, Selecta Math. (N.S.), 5(1) (1999), 123-159.
  • C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, (2017), arXiv:1705.05661.
  • Z. Wei, Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE, (2019), Preprint available on the author's website: https://drive.google.com/file/d/1ZogGH4Rfenq7AXTvxOdsoqGbSHCbfrjr/view.
  • Z. Wei, Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE, (2019), Preprint available on the author's website: https://drive.google.com/file/d/1ZogGH4Rfenq7AXTvxOdsoqGbSHCbfrjr/view.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Zhaoting Weı This is me

Publication Date January 5, 2021
Published in Issue Year 2021 Volume: 29 Issue: 29

Cite

APA Weı, Z. (2021). TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. International Electronic Journal of Algebra, 29(29), 175-186. https://doi.org/10.24330/ieja.852178
AMA Weı Z. TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. IEJA. January 2021;29(29):175-186. doi:10.24330/ieja.852178
Chicago Weı, Zhaoting. “TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA”. International Electronic Journal of Algebra 29, no. 29 (January 2021): 175-86. https://doi.org/10.24330/ieja.852178.
EndNote Weı Z (January 1, 2021) TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. International Electronic Journal of Algebra 29 29 175–186.
IEEE Z. Weı, “TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA”, IEJA, vol. 29, no. 29, pp. 175–186, 2021, doi: 10.24330/ieja.852178.
ISNAD Weı, Zhaoting. “TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA”. International Electronic Journal of Algebra 29/29 (January 2021), 175-186. https://doi.org/10.24330/ieja.852178.
JAMA Weı Z. TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. IEJA. 2021;29:175–186.
MLA Weı, Zhaoting. “TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA”. International Electronic Journal of Algebra, vol. 29, no. 29, 2021, pp. 175-86, doi:10.24330/ieja.852178.
Vancouver Weı Z. TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. IEJA. 2021;29(29):175-86.